Processing math: 100%

Right Circular Cylinder

A cylinder, whose uniform cross section perpendicular to its height (or length) is a circle, is called a right circular cylinder.

A Right Circular Cylinder



A Cylinder but Not a Right Circular One

A right circular cylinder has two plane faces which are circular and curved surface.

A right circular cylinder is a solid generated by the revolution of a rectangle about one of its sides.

Right Circular Cylinder Revolution of a Rectangle

Here, the rectangle PQRS has been revolved about the side SR. The length of the side SR will be the height and the length of the side PS will be the radius of the cross section.



Volume of a Right Circular Cylinder

= (Area of the Cross Section) × Height

= (Area of the Base) × Height

= (Area of the Circle whose Radius is r) × h

= πr2h




Lateral Surface Area or Curved Surface Area of a Right Circular Cylinder

Curved Surface Area of a Right Circular Cylinder

= (Perimeter of the Cross Section) × Height

= 2πrh










Total Surface Area of a Right Circular Cylinder

Total Surface Area of a Right Circular Cylinder

= Lateral Surface Area + 2 × (Area of the Cross Section)

= 2πrh + 2πr2

= 2πr(h + r)









Solved Examples on Volume and Surface Area of Right Circular Cylinders:

1. The radius of the base of a solid right circular cylinder is 7 cm and its height is 20 cm. Find its (i) volume, (ii) curved surface area, and (iii) total surface area.

Solution:

Here, the radius of the base of a solid right circular cylinder r = 7 cm and height h = 20 cm.

Solid Right Circular Cylinder

(i) Volume of the right circular cylinder = πr2h

                                                         = 227 ∙ 72 ∙ 20 cm3

                                                         = 3,080 cm3.


(ii) Curved surface area of the right circular cylinder

                                                         = 2πr × h

                                                         = 2 ∙ 227 ∙ 7 ∙ 20 cm2

                                                         = 880 cm2.


(iii) Total surface area of the right circular cylinder

                                                          = 2πrh + 2πr2

                                                          = 2πr(h + r)

                                                          = 2 ∙ 227 ∙ 7(20 + 7) cm2 

                                                          = 1,188 cm2.


2. The volume of the right circular cylinder is 308 cm3 and its height is 8 cm. Find (i) the radius of its cross section, and (ii) the area of its curved surface.

Solution:

Let r be the radius of the cross section (or base).

Here h = 8 cm.

Then, the volume of the right circular cylinder = πr2h = πr2 ∙ 8 cm.

Therefore, 308 cm3 = πr2 ∙ 8 cm

⟹ r= 308cm2π8

⟹ r= 308cm22278

⟹ r= 308×722×8 cm2.

⟹ r= 494 cm2.

Therefore, r = 72 cm.

Therefore, (i) radius of the cross section of the right circular cylinder

                                                                = 72 cm

                                                                = 3.5 cm,

(ii) area of the curved surface of the right circular cylinder

                                                                = 2πrh

                                                                = 2 × 227 × 72 × 8 cm2.

                                                                = 176 cm2.


3. The radius of the base of a right circular cylinder is increased by 75% and the height is decreased by 50%. Find the per cent increase or decrease in the (i) volume, and (ii) curved surface area.

Solution:

Let the radius of the right circular cylinder = r,

Height of the right circular cylinder = h,

Volume of the right circular cylinder = V, and

Curved surface area of the right circular cylinder = S.

Therefore, V = πr2h and S = 2πrh.

After the changes, radius = R = r + (75% of r)

                                           = r + ¾ r

                                           = 74r;

Height = H = h – (50% of h)

                 = h – ½ h

                 = ½ h.

(i) The changed volume V’ = πR2H

                                       = π ∙ (74r)2  ∙ 12h

                                       = 4932 πr2h

                                       = 4932V.

Therefore, the volume increases by 4932V – V, i.e., 1732V.

Therefore, the percent increase in volume = 1732VV × 100%

                                                             = 17×10032%

                                                             = 5318%.


(ii) The changed curved surface area S’ = 2πRH

                                                         = 2π ∙ 74r ∙ 12 h

                                                         = 78 ∙ 2πrh

                                                         = 78 S.

Therefore, the curved surface area decreases by S - 78 S , i.e., 18 S.

Therefore, the per cent decreases in curved surface area = 18SS × 100%

                                                                                  = 1212%.




9th Grade Math

From Right Circular Cylinder to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:17 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  2. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 05, 25 01:05 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More

  5. Multiplication of a Decimal by 10, 100, 1000 | Multiplying decimals

    May 05, 25 12:23 AM

    Multiplication of a Decimal by 10, 100, 1000
    The working rule of multiplication of a decimal by 10, 100, 1000, etc... are: When the multiplier is 10, 100 or 1000, we move the decimal point to the right by as many places as number of zeroes after…

    Read More