Relation between Roots and Coefficients of a Quadratic Equation

We will learn how to find the relation between roots and coefficients of a quadratic equation.

Let us take the quadratic equation of the general form ax^2 + bx + c = 0 where a (≠ 0) is the coefficient of x^2, b the coefficient of x and c, the constant term.

Let α and β be the roots of the equation ax^2 + bx + c = 0

Now we are going to find the relations of α and β with a, b and c.

Now ax^2 + bx + c = 0

Multiplication both sides by 4a (a ≠ 0) we get

4a^2x^2 + 4abx + 4ac = 0

(2ax)^2 + 2 * 2ax * b + b^2 – b^2 + 4ac = 0

(2ax + b)^2 = b^2 - 4ac

2ax + b = ± \(\sqrt{b^{2} - 4ac}\)

x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

Therefore, the roots of (i) are \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

Let α = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) and β = \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

Therefore,

α + β = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) + \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

α + β = \(\frac{-2b}{2a}\)

α + β = -\(\frac{b}{a}\)

α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\)

Again, αβ = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) × \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

αβ = \(\frac{(-b)^{2} - (\sqrt{b^{2} - 4ac)}^{2}}{4a^{2}}\)

αβ = \(\frac{b^{2} - (b^{2} - 4ac)}{4a^{2}}\)

αβ = \(\frac{4ac}{4a^{2}}\)

αβ = \(\frac{c}{a}\)

αβ = \(\frac{constant term}{coefficient of x^{2}}\)


Therefore, α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\) and αβ = \(\frac{constant term}{coefficient of x^{2}}\) represent the required relations between roots (i.e., α and β) and coefficients (i.e., a, b and c) of equation ax^2 + bx + c = 0.

 For example, if the roots of the equation 7x^2 - 4x - 8 = 0 be α and β, then

Sum of the roots = α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\) = -\(\frac{-4}{7}\) = \(\frac{4}{7}\).

and

the product of the roots = αβ = \(\frac{constant term}{coefficient of x^{2}}\) = \(\frac{-8}{7}\) = -\(\frac{8}{7}\).

Solved examples to find the relation between roots and coefficients of a quadratic equation:

Without solving the equation 5x^2 - 3x + 10 = 0, find the sum and the product of the roots.

Solution:

Let α and β be the roots of the given equation.

Then,

α + β = -\(\frac{-3}{5}\) = \(\frac{3}{5}\) and

αβ = \(\frac{10}{5}\) = 2

 

To find the conditions when roots are connected by given relations

Sometimes the relation between roots of a quadratic equation is given and we are asked to find the condition i.e., relation between the coefficients a, b and c of quadratic equation. This is easily done using the formula α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\). This will clear when you go through illustrative examples.


1. If α and β are the roots of the equation x^2 - 4x + 2 = 0, find the value of

(i) α^2 + β^2

(ii) α^2 - β^2

(iii) α^3 + β^3

(iv \(\frac{1}{α}\) + \(\frac{1}{ β }\)

Solution:

The given equation is x^2 - 4x + 2 = 0 ...................... (i)

According to the problem, α and β are the roots of the equation (i)

Therefore,

α + β = -\(\frac{b}{a}\) = -\(\frac{-4}{1}\) = 4

and αβ = \(\frac{c}{a}\) = \(\frac{2}{1}\) = 2

(i) Now α^2 + β^2 = (α + β)^2 - 2αβ = (4)^2 – 2 * 2 = 16 – 4 = 12.

(ii) α^2 - β^2 = (α + β)( α - β)

Now (α - β)^2 = (α + β)^2 - 4αβ = (4)^2 – 4 * 2 = 16 – 8 = 8

⇒ α - β = ± √8

⇒ α - β = ± 2√2

Therefore, α^2 - β^2 = (α + β)( α - β) = 4 * (± 2√2) = ± 8√2.

(iii) α^3 + β^3 = (α + β)^3 - 3αβ(α + β) = (4)^3 – 3 * 2 * 4 = 64 – 24 = 40.

(iv) \(\frac{1}{α}\) + \(\frac{1}{ β }\) = \(\frac{ α + β }{α β }\) = \(\frac{4}{2}\) = 2.




11 and 12 Grade Math 

From Relation between Roots and Coefficients of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 8 Times Table | Printable Multiplication Table | Video

    Mar 18, 25 03:30 PM

    worksheet on multiplication of 8 times table
    Worksheet on 8 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Mar 18, 25 02:47 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  3. Conversion of Roman Numeration | Roman Numerals |Hindu Arabic Numerals

    Mar 18, 25 02:12 PM

    We will learn the conversion of Roman numeration. First we will learn how to convert numbers in roman numerals. 1. Convert 579 in roman numerals.

    Read More

  4. Rules of Roman Numeration |Roman Number System|Roman Numeration System

    Mar 18, 25 09:41 AM

    Rules of Roman Numerals
    We will learn about Roman Numeration and its rules. We know that there are seven basic Roman Numerals. They are I, V, X, L, C, D and M. These numerals stand for the number 1, 5, 10, 50, 100, 500

    Read More

  5. Divisible by 2 | Test of Divisibility by 2 |Rules of Divisibility by 2

    Mar 17, 25 04:04 PM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More