Relation between Roots and Coefficients of a Quadratic Equation

We will learn how to find the relation between roots and coefficients of a quadratic equation.

Let us take the quadratic equation of the general form ax^2 + bx + c = 0 where a (≠ 0) is the coefficient of x^2, b the coefficient of x and c, the constant term.

Let α and β be the roots of the equation ax^2 + bx + c = 0

Now we are going to find the relations of α and β with a, b and c.

Now ax^2 + bx + c = 0

Multiplication both sides by 4a (a ≠ 0) we get

4a^2x^2 + 4abx + 4ac = 0

(2ax)^2 + 2 * 2ax * b + b^2 – b^2 + 4ac = 0

(2ax + b)^2 = b^2 - 4ac

2ax + b = ± \(\sqrt{b^{2} - 4ac}\)

x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

Therefore, the roots of (i) are \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

Let α = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) and β = \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

Therefore,

α + β = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) + \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

α + β = \(\frac{-2b}{2a}\)

α + β = -\(\frac{b}{a}\)

α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\)

Again, αβ = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) × \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

αβ = \(\frac{(-b)^{2} - (\sqrt{b^{2} - 4ac)}^{2}}{4a^{2}}\)

αβ = \(\frac{b^{2} - (b^{2} - 4ac)}{4a^{2}}\)

αβ = \(\frac{4ac}{4a^{2}}\)

αβ = \(\frac{c}{a}\)

αβ = \(\frac{constant term}{coefficient of x^{2}}\)


Therefore, α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\) and αβ = \(\frac{constant term}{coefficient of x^{2}}\) represent the required relations between roots (i.e., α and β) and coefficients (i.e., a, b and c) of equation ax^2 + bx + c = 0.

 For example, if the roots of the equation 7x^2 - 4x - 8 = 0 be α and β, then

Sum of the roots = α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\) = -\(\frac{-4}{7}\) = \(\frac{4}{7}\).

and

the product of the roots = αβ = \(\frac{constant term}{coefficient of x^{2}}\) = \(\frac{-8}{7}\) = -\(\frac{8}{7}\).

Solved examples to find the relation between roots and coefficients of a quadratic equation:

Without solving the equation 5x^2 - 3x + 10 = 0, find the sum and the product of the roots.

Solution:

Let α and β be the roots of the given equation.

Then,

α + β = -\(\frac{-3}{5}\) = \(\frac{3}{5}\) and

αβ = \(\frac{10}{5}\) = 2

 

To find the conditions when roots are connected by given relations

Sometimes the relation between roots of a quadratic equation is given and we are asked to find the condition i.e., relation between the coefficients a, b and c of quadratic equation. This is easily done using the formula α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\). This will clear when you go through illustrative examples.


1. If α and β are the roots of the equation x^2 - 4x + 2 = 0, find the value of

(i) α^2 + β^2

(ii) α^2 - β^2

(iii) α^3 + β^3

(iv \(\frac{1}{α}\) + \(\frac{1}{ β }\)

Solution:

The given equation is x^2 - 4x + 2 = 0 ...................... (i)

According to the problem, α and β are the roots of the equation (i)

Therefore,

α + β = -\(\frac{b}{a}\) = -\(\frac{-4}{1}\) = 4

and αβ = \(\frac{c}{a}\) = \(\frac{2}{1}\) = 2

(i) Now α^2 + β^2 = (α + β)^2 - 2αβ = (4)^2 – 2 * 2 = 16 – 4 = 12.

(ii) α^2 - β^2 = (α + β)( α - β)

Now (α - β)^2 = (α + β)^2 - 4αβ = (4)^2 – 4 * 2 = 16 – 8 = 8

⇒ α - β = ± √8

⇒ α - β = ± 2√2

Therefore, α^2 - β^2 = (α + β)( α - β) = 4 * (± 2√2) = ± 8√2.

(iii) α^3 + β^3 = (α + β)^3 - 3αβ(α + β) = (4)^3 – 3 * 2 * 4 = 64 – 24 = 40.

(iv) \(\frac{1}{α}\) + \(\frac{1}{ β }\) = \(\frac{ α + β }{α β }\) = \(\frac{4}{2}\) = 2.




11 and 12 Grade Math 

From Relation between Roots and Coefficients of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More