Reciprocal of a Fraction

Here we will learn reciprocal of a fraction. 

Reciprocal of a Number:

Let us learn reciprocal of a number.

Any natural number can be written as \(\frac{number}{1}\)

10 = \(\frac{10}{1}\);       5 = \(\frac{5}{1}\);       23 = \(\frac{23}{1}\);      52 = \(\frac{52}{1}\) and so on.

Reciprocal of \(\frac{10}{1}\) = \(\frac{1}{10}\)

Reciprocal of \(\frac{23}{1}\) = \(\frac{1}{23}\)

Reciprocal of \(\frac{52}{1}\) = \(\frac{1}{52}\)

Reciprocal of \(\frac{16}{1}\) = \(\frac{1}{16}\)

Reciprocal of \(\frac{36}{1}\) = \(\frac{1}{36}\), etc.

Reciprocal of a Fraction:

What is the reciprocal of \(\frac{2}{3}\)?

Reciprocal of a fraction is the fraction inverted.

Therefore, reciprocal of \(\frac{2}{3}\) = \(\frac{3}{2}\)

Reciprocal of \(\frac{5}{6}\) = \(\frac{6}{5}\), etc.


What is \(\frac{1}{4}\) of 4?

We know that \(\frac{1}{4}\) of 4 means \(\frac{1}{4}\) × 4, let us use the rule of repeated addition to find \(\frac{1}{4}\) × 4.

Reciprocal of Fraction

We can say that \(\frac{1}{4}\) is the reciprocal of 4 or 4 is the reciprocal or multiplicative inverse of \(\frac{1}{4}\).

Now, let us consider the multiplication of the following pairs of fractional numbers.

\(\frac{3}{7}\) × \(\frac{7}{3}\);

\(\frac{5}{8}\) × \(\frac{8}{5}\);

\(\frac{2}{9}\) × \(\frac{9}{2}\) 

We observe that

\(\frac{3}{7}\) × \(\frac{7}{3}\) = \(\frac{21}{21}\) = 1;  

\(\frac{5}{8}\) × \(\frac{8}{5}\) = \(\frac{40}{40}\) = 1;   

\(\frac{2}{9}\) × \(\frac{9}{2}\) = \(\frac{18}{18}\) = 1;

Therefore, if the product of two fractions is 1 we call each fraction as the reciprocal of the other. We can get reciprocal of a fraction by interchanging the numerator and the denominator. The reciprocal of 1 is 1 and there is no reciprocal for 0.


Solved Examples on Reciprocal of a Fraction:

1. Find the reciprocal of \(\frac{11}{15}\)       

Solution:

By interchanging the numerator and the denominator we get \(\frac{15}{11}\).

\(\frac{11}{15}\) × \(\frac{15}{11}\) = \(\frac{165}{165}\) = 1;

Hence, \(\frac{15}{11}\) is the reciprocal of \(\frac{11}{15}\).


2. Find the reciprocal of \(\frac{1}{571}\)       

Solution:

By interchanging the numerator and the denominator we get \(\frac{571}{1}\).

\(\frac{1}{571}\) × \(\frac{571}{1}\) = \(\frac{571}{571}\) = 1;

Hence, \(\frac{571}{1}\) i.e., 571 is the reciprocal of \(\frac{1}{571}\).



Reciprocal of a Mixed Fraction:

To find the reciprocal of a mixed fraction first we need to convert the mixed fractional number to improper fraction and then interchange the numerator and the denominator of the improper fraction.

Solved Examples on Reciprocal of a mixed fraction:

1. Find the reciprocal of 2\(\frac{5}{9}\)       

Solution:

2\(\frac{5}{9}\) is a mixed fraction.

Let's convert the mixed fraction to improper fraction.

2\(\frac{5}{9}\)

= \(\frac{9 × 2 + 5}{9}\)

= \(\frac{23}{9}\)

By interchanging the numerator and the denominator we get \(\frac{9}{23}\).

\(\frac{23}{9}\) × \(\frac{9}{23}\) = \(\frac{207}{207}\) = 1;

Hence, \(\frac{9}{23}\) is the reciprocal of \(\frac{23}{9}\) i.e., 2\(\frac{5}{9}\).

Reciprocal of a Fraction


2. Find the reciprocal of 5\(\frac{13}{21}\)       

Solution:

5\(\frac{13}{21}\) is a mixed fraction.

Let's convert the mixed fraction to improper fraction.

5\(\frac{13}{21}\)  

= \(\frac{21 × 5 + 13}{21}\)

= \(\frac{118}{21}\)

By interchanging the numerator and the denominator we get \(\frac{21}{118}\).

\(\frac{118}{21}\) × \(\frac{21}{118}\) = \(\frac{2478}{2478}\) = 1;

Hence, \(\frac{21}{118}\) is the reciprocal of \(\frac{118}{21}\) i.e., 5\(\frac{13}{21}\).






4th Grade Math Activities

From Reciprocal of a Fraction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More