Reciprocal of a Fraction

Here we will learn reciprocal of a fraction. 

Reciprocal of a Number:

Let us learn reciprocal of a number.

Any natural number can be written as \(\frac{number}{1}\)

10 = \(\frac{10}{1}\);       5 = \(\frac{5}{1}\);       23 = \(\frac{23}{1}\);      52 = \(\frac{52}{1}\) and so on.

Reciprocal of \(\frac{10}{1}\) = \(\frac{1}{10}\)

Reciprocal of \(\frac{23}{1}\) = \(\frac{1}{23}\)

Reciprocal of \(\frac{52}{1}\) = \(\frac{1}{52}\)

Reciprocal of \(\frac{16}{1}\) = \(\frac{1}{16}\)

Reciprocal of \(\frac{36}{1}\) = \(\frac{1}{36}\), etc.

Reciprocal of a Fraction:

What is the reciprocal of \(\frac{2}{3}\)?

Reciprocal of a fraction is the fraction inverted.

Therefore, reciprocal of \(\frac{2}{3}\) = \(\frac{3}{2}\)

Reciprocal of \(\frac{5}{6}\) = \(\frac{6}{5}\), etc.


What is \(\frac{1}{4}\) of 4?

We know that \(\frac{1}{4}\) of 4 means \(\frac{1}{4}\) × 4, let us use the rule of repeated addition to find \(\frac{1}{4}\) × 4.

Reciprocal of Fraction

We can say that \(\frac{1}{4}\) is the reciprocal of 4 or 4 is the reciprocal or multiplicative inverse of \(\frac{1}{4}\).

Now, let us consider the multiplication of the following pairs of fractional numbers.

\(\frac{3}{7}\) × \(\frac{7}{3}\);

\(\frac{5}{8}\) × \(\frac{8}{5}\);

\(\frac{2}{9}\) × \(\frac{9}{2}\) 

We observe that

\(\frac{3}{7}\) × \(\frac{7}{3}\) = \(\frac{21}{21}\) = 1;  

\(\frac{5}{8}\) × \(\frac{8}{5}\) = \(\frac{40}{40}\) = 1;   

\(\frac{2}{9}\) × \(\frac{9}{2}\) = \(\frac{18}{18}\) = 1;

Therefore, if the product of two fractions is 1 we call each fraction as the reciprocal of the other. We can get reciprocal of a fraction by interchanging the numerator and the denominator. The reciprocal of 1 is 1 and there is no reciprocal for 0.


Solved Examples on Reciprocal of a Fraction:

1. Find the reciprocal of \(\frac{11}{15}\)       

Solution:

By interchanging the numerator and the denominator we get \(\frac{15}{11}\).

\(\frac{11}{15}\) × \(\frac{15}{11}\) = \(\frac{165}{165}\) = 1;

Hence, \(\frac{15}{11}\) is the reciprocal of \(\frac{11}{15}\).


2. Find the reciprocal of \(\frac{1}{571}\)       

Solution:

By interchanging the numerator and the denominator we get \(\frac{571}{1}\).

\(\frac{1}{571}\) × \(\frac{571}{1}\) = \(\frac{571}{571}\) = 1;

Hence, \(\frac{571}{1}\) i.e., 571 is the reciprocal of \(\frac{1}{571}\).



Reciprocal of a Mixed Fraction:

To find the reciprocal of a mixed fraction first we need to convert the mixed fractional number to improper fraction and then interchange the numerator and the denominator of the improper fraction.

Solved Examples on Reciprocal of a mixed fraction:

1. Find the reciprocal of 2\(\frac{5}{9}\)       

Solution:

2\(\frac{5}{9}\) is a mixed fraction.

Let's convert the mixed fraction to improper fraction.

2\(\frac{5}{9}\)

= \(\frac{9 × 2 + 5}{9}\)

= \(\frac{23}{9}\)

By interchanging the numerator and the denominator we get \(\frac{9}{23}\).

\(\frac{23}{9}\) × \(\frac{9}{23}\) = \(\frac{207}{207}\) = 1;

Hence, \(\frac{9}{23}\) is the reciprocal of \(\frac{23}{9}\) i.e., 2\(\frac{5}{9}\).

Reciprocal of a Fraction


2. Find the reciprocal of 5\(\frac{13}{21}\)       

Solution:

5\(\frac{13}{21}\) is a mixed fraction.

Let's convert the mixed fraction to improper fraction.

5\(\frac{13}{21}\)  

= \(\frac{21 × 5 + 13}{21}\)

= \(\frac{118}{21}\)

By interchanging the numerator and the denominator we get \(\frac{21}{118}\).

\(\frac{118}{21}\) × \(\frac{21}{118}\) = \(\frac{2478}{2478}\) = 1;

Hence, \(\frac{21}{118}\) is the reciprocal of \(\frac{118}{21}\) i.e., 5\(\frac{13}{21}\).






4th Grade Math Activities

From Reciprocal of a Fraction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 09:20 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More