Quadratic Equations


In quadratic equations we will learn about ………

Solving a quadratic equation (factorization method)

Roots of the quadratic equation.


In polynomials, we studied that a polynomial of degree 1 is called a linear polynomials. 

For example: x - 5, 7x, 3 - 2x are linear polynomials which may be monomials or binomials. 


A polynomial of degree 2 (two) is called a quadratic polynomial. 

For example: 3x², x² + 7 , x² – 3x + 4 are quadratic polynomials which may be monomials, binomials or trinomials. 

What is known as quadratic equation? 

When these quadratic polynomials are equated to zero, equation is formed and is known as a quadratic equation. 

The standard form of quadratic equation is ax² + bx + c = 0. Here a, b, c are real numbers and a ≠ 0. The power of x in the equation must be a non-negative integer.



Examples of quadratic equation

(i) 3x² - 6x + 1 = 0 is a quadratic equation.

(ii) x + (1/x) = 5 is a quadratic equation.

On solving, we get x × x + (1/x) × x = 5 × x

⇒ x² + 1 = 5x

⇒ x² - 5x + 1 = 0

(iii) √2x² - x - 7 = 0 is a quadratic equation.

(iv) 3x² - √x + 1 = 0 is not a quadratic equation, since the power of x must be a positive integer.

(v) x² - (1/x) + 7 = 0 is not a quadratic equation, since on solving it becomes an equation of degree 3.

(vi) x² - 4 = 0 is a quadratic equation.

(vii) x² = 0 is a quadratic equation.

Solving a quadratic equation and finding the roots of quadratic equation

Write the quadratic equation in the standard form, i.e.,

        ax² + bx + c = 0.

Factorize the quadratic equation.


Express it as the product of two linear factors, say (px + q) and (rx + s), where p, q, r, S are real numbers and p, r are not equal to zero.

Then, ax² + bx + c = 0

(px + q) (rx + s) = 0


Put each of the linear factors equal to zero

i.e., px + q = 0     and     rx + s = 0

⇒ px = - q           ⇒ rx = - s

⇒ x = -q/p           ⇒ x = -s/r

 Thus, the two values of x are called the roots of the quadratic equation. 


 Therefore, the solution set = {-q/p, -s/r}


How to solve quadratic equations?

Worked-out problems on solving quadratic equation will help the students to understand the detailed explanation showing the step-by-step quadratic equation solution.

1. Solve: x² + 6x + 5 = 0

Solution:

x² + 6x + 5 = 0

⇒ x² + 5x + x + 5 = 0

⇒ x(x + 5) + 1(x + 5) = 0

⇒ (x + 1) (x + 5) = 0

⇒ x + 1 = 0 and x + 5 = 0

⇒ x = -1   and   x = -5

Therefore, solution set = {-1, -5}


2. Solve: 8x² = 21 + 22x

Solution:

8x² = 21 + 22x

⇒ 8x² - 21 - 22x = 0

⇒ 8x² - 22x - 21 = 0

⇒ 8x² - 28x + 6x - 21 = 0

⇒ 4x (2x - 7) + 3(2x - 7) = 0

⇒ (4x + 3) (2x - 7) = 0

⇒ 4x + 3 = 0 and 2x - 7 = 0

⇒ 4x = -3 and 2x = 7

⇒ x = -3/₄ and x = ⁷/₂

Therefore, solution set = {-3/₄, ⁷/₂}



3. 1/(x + 4) - 1/(x - 7) = 11/30

Solution:

1/(x + 4) - 1/(x - 7) = 11/30 

⇒ [(x - 7) - (x + 4)]/(x + 4) (x - 7) = ¹¹/₃₀

⇒ [x - 7 - x - 4]/(x² - 3x - 28) = ¹¹/₃₀

⇒ - 11/(x² - 3x - 28) = ¹¹/₃₀

⇒ -1/(x² - 3x - 28) = ¹/₃₀

⇒ -30 = x² - 3x - 28

⇒ x² - 3x + 2 = 0

⇒ x² - 2x - x + 2 = 0

⇒ x(x - 2) - 1(x - 2) = 0

⇒ (x - 1) (x - 2) = 0

⇒ x - 1 = 0 and x - 2 = 0

⇒ x = 1 and x = 2

Therefore, Solution set = {1, 2}


4. Solve (2x - 3)/(x + 2) = (3x - 7)/(x + 3)

Solution:

(2x - 3)/(x + 2) = (3x - 7)/(x + 3)

⇒ (2x - 3) (x + 3) = (x + 2) (3x - 7)

⇒ 2x² + 6x - 3x - 9 = 3x² - 7x + 6x - 14

⇒ 2x² + 6x - 3x - 9 - 3x² + 7x - 6x + 14 = 0

⇒ 2x² - 3x² + 6x - 3x + 7x - 6x - 9 + 14 = 0

⇒ -x² - 4x + 5 = 0

⇒ x² + 4x - 5 = 0

⇒ x² + 5x - x - 5 = 0

⇒ x (x + 5) -1 (x + 5) = 0

⇒ (x - 1) (x + 5) = 0

⇒ x - 1 = 0 and x + 5 = 0

⇒ x = 1 and x = -5

Therefore, solution set = {1, -5}



5. Solve x² - 9/5 + x² = -5/₉

Solution:

x² - 9/5 + x² = -5/₉

⇒ 9(x² - 9) = -5 (5 + x²)

⇒ 9x² - 81 = -25 - 5x²

⇒ 9x² + 5 x² = -25 + 81

⇒ 14x² = 56

⇒ x² = 56/14

⇒ x² = 4

⇒ x² - 4 = 0

⇒ x² - 2² = 0

⇒ (x - 2) (x + 2) = 0

⇒ x - 2 = 0 and x + 2 = 0

⇒ x = 2 and x = -2

Therefore, solution set = {2, -2}


These are the above examples on quadratic equations which are explained to show the exact way to solve.







8th Grade Math Practice

From Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 14, 25 01:53 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  2. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More

  3. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  4. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  5. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More