Quadratic Equations


In quadratic equations we will learn about ………

Solving a quadratic equation (factorization method)

Roots of the quadratic equation.


In polynomials, we studied that a polynomial of degree 1 is called a linear polynomials. 

For example: x - 5, 7x, 3 - 2x are linear polynomials which may be monomials or binomials. 


A polynomial of degree 2 (two) is called a quadratic polynomial. 

For example: 3x², x² + 7 , x² – 3x + 4 are quadratic polynomials which may be monomials, binomials or trinomials. 

What is known as quadratic equation? 

When these quadratic polynomials are equated to zero, equation is formed and is known as a quadratic equation. 

The standard form of quadratic equation is ax² + bx + c = 0. Here a, b, c are real numbers and a ≠ 0. The power of x in the equation must be a non-negative integer.



Examples of quadratic equation

(i) 3x² - 6x + 1 = 0 is a quadratic equation.

(ii) x + (1/x) = 5 is a quadratic equation.

On solving, we get x × x + (1/x) × x = 5 × x

⇒ x² + 1 = 5x

⇒ x² - 5x + 1 = 0

(iii) √2x² - x - 7 = 0 is a quadratic equation.

(iv) 3x² - √x + 1 = 0 is not a quadratic equation, since the power of x must be a positive integer.

(v) x² - (1/x) + 7 = 0 is not a quadratic equation, since on solving it becomes an equation of degree 3.

(vi) x² - 4 = 0 is a quadratic equation.

(vii) x² = 0 is a quadratic equation.

Solving a quadratic equation and finding the roots of quadratic equation

Write the quadratic equation in the standard form, i.e.,

        ax² + bx + c = 0.

Factorize the quadratic equation.


Express it as the product of two linear factors, say (px + q) and (rx + s), where p, q, r, S are real numbers and p, r are not equal to zero.

Then, ax² + bx + c = 0

(px + q) (rx + s) = 0


Put each of the linear factors equal to zero

i.e., px + q = 0     and     rx + s = 0

⇒ px = - q           ⇒ rx = - s

⇒ x = -q/p           ⇒ x = -s/r

 Thus, the two values of x are called the roots of the quadratic equation. 


 Therefore, the solution set = {-q/p, -s/r}


How to solve quadratic equations?

Worked-out problems on solving quadratic equation will help the students to understand the detailed explanation showing the step-by-step quadratic equation solution.

1. Solve: x² + 6x + 5 = 0

Solution:

x² + 6x + 5 = 0

⇒ x² + 5x + x + 5 = 0

⇒ x(x + 5) + 1(x + 5) = 0

⇒ (x + 1) (x + 5) = 0

⇒ x + 1 = 0 and x + 5 = 0

⇒ x = -1   and   x = -5

Therefore, solution set = {-1, -5}


2. Solve: 8x² = 21 + 22x

Solution:

8x² = 21 + 22x

⇒ 8x² - 21 - 22x = 0

⇒ 8x² - 22x - 21 = 0

⇒ 8x² - 28x + 6x - 21 = 0

⇒ 4x (2x - 7) + 3(2x - 7) = 0

⇒ (4x + 3) (2x - 7) = 0

⇒ 4x + 3 = 0 and 2x - 7 = 0

⇒ 4x = -3 and 2x = 7

⇒ x = -3/₄ and x = ⁷/₂

Therefore, solution set = {-3/₄, ⁷/₂}



3. 1/(x + 4) - 1/(x - 7) = 11/30

Solution:

1/(x + 4) - 1/(x - 7) = 11/30 

⇒ [(x - 7) - (x + 4)]/(x + 4) (x - 7) = ¹¹/₃₀

⇒ [x - 7 - x - 4]/(x² - 3x - 28) = ¹¹/₃₀

⇒ - 11/(x² - 3x - 28) = ¹¹/₃₀

⇒ -1/(x² - 3x - 28) = ¹/₃₀

⇒ -30 = x² - 3x - 28

⇒ x² - 3x + 2 = 0

⇒ x² - 2x - x + 2 = 0

⇒ x(x - 2) - 1(x - 2) = 0

⇒ (x - 1) (x - 2) = 0

⇒ x - 1 = 0 and x - 2 = 0

⇒ x = 1 and x = 2

Therefore, Solution set = {1, 2}


4. Solve (2x - 3)/(x + 2) = (3x - 7)/(x + 3)

Solution:

(2x - 3)/(x + 2) = (3x - 7)/(x + 3)

⇒ (2x - 3) (x + 3) = (x + 2) (3x - 7)

⇒ 2x² + 6x - 3x - 9 = 3x² - 7x + 6x - 14

⇒ 2x² + 6x - 3x - 9 - 3x² + 7x - 6x + 14 = 0

⇒ 2x² - 3x² + 6x - 3x + 7x - 6x - 9 + 14 = 0

⇒ -x² - 4x + 5 = 0

⇒ x² + 4x - 5 = 0

⇒ x² + 5x - x - 5 = 0

⇒ x (x + 5) -1 (x + 5) = 0

⇒ (x - 1) (x + 5) = 0

⇒ x - 1 = 0 and x + 5 = 0

⇒ x = 1 and x = -5

Therefore, solution set = {1, -5}



5. Solve x² - 9/5 + x² = -5/₉

Solution:

x² - 9/5 + x² = -5/₉

⇒ 9(x² - 9) = -5 (5 + x²)

⇒ 9x² - 81 = -25 - 5x²

⇒ 9x² + 5 x² = -25 + 81

⇒ 14x² = 56

⇒ x² = 56/14

⇒ x² = 4

⇒ x² - 4 = 0

⇒ x² - 2² = 0

⇒ (x - 2) (x + 2) = 0

⇒ x - 2 = 0 and x + 2 = 0

⇒ x = 2 and x = -2

Therefore, solution set = {2, -2}


These are the above examples on quadratic equations which are explained to show the exact way to solve.







8th Grade Math Practice

From Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More