Method of Cross Multiplication

The next method of solving linear equations in two variables that we are going to learn about is method of cross multiplication.

Let us see the steps followed while soling the linear equation by method of cross multiplication:

Assume two linear equation be

 A1 x + B1y + C= 0, and

A2x + B2y + C= 0.

The coefficients of x are: Aand  A2.

The coefficients of y are: B1 and B2.

The constant terms are: C1 and  C2.

To solve the equations in a simplified way, we use following table:

Method of Cross Multiplication

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

Equating one another we find the value of x and y of the given equations.


Let us solve some examples based upon this concept:

1. Solve for ‘x’ and ‘y’:

 3x + 2y + 10 = 0, and

 4x + 5y + 20 = 0.

Solution:

Let us solve the given equations using method of cross multiplication:

The coefficients of x are 3 and 4.

The coefficients of y are 2 and 5.

The constant terms are 10 and 20.

The table can be formed as:

Method of Cross Multiplication

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get:

\(\frac{x}{2 × 20 - 5 × 10} = \frac{y}{10 × 4 - 20 × 3} = \frac{1}{3 × 5 - 4 × 2}\)

\(\frac{x}{-10} = \frac{y}{-20} = \frac{1}{7}\)

Equating x term with constant term, we get x = -\(\frac{10}{7}\).

On equating y term with constant y term, we get y = -\(\frac{20}{7}\).

2. Solve for x and y:

6x + 5y + 15 = 0, and

3x + 4y + 9 = 0.

Solution:

Let us solve the given equation using method of cross multiplication:

The coefficients of x are 6 and 3.

The coefficients of y are 5 and 4.

The constant values are 15 and 9.

The table can be formed as:

Method of Cross Multiplication

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get;

\(\frac{x}{5 × 9 - 4 × 15} = \frac{y}{15 × 3 - 9 × 6} = \frac{1}{6 × 4 - 3 × 5}\)

\(\frac{x}{-15} = \frac{y}{-9} = \frac{1}{9}\)

On equating x term with constant term, we get x= \(\frac{-15}{9}\), i.e., x = -\(\frac{5}{3}\).

On equating y term with constant term we get, y = \(\frac{-9}{9}\)

 = -1.


3. Solve for x and y:

5x + 6y + 10 = 0, and

2x + 9y = 0.

Solution:

The coefficients of x are 5 and 2.

The coefficients of y are 6 and 9.

The constant terms are 10 and 0.

The table can be formed as:

Method of Cross Multiplication

On solving, we get:

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get;

\(\frac{x}{6 × 0 - 9 × 10} = \frac{y}{10 × 2 - 0 × 5} = \frac{1}{5 × 9 - 2 × 6}\)

\(\frac{x}{-90} = \frac{y}{20} = \frac{1}{33}\)

On equating x term with constant term, we get x = \(\frac{-90}{33}\) = -\(\frac{30}{11}\).

On equating y term with constant term we get, y = \(\frac{20}{33}\).


4. Solve for x and y;

x + y + 10 = 0.

3x + 7y + 2 = 0.

Solution:

The coefficients of x are 1 and 3.

The coefficients of y are 1 and 7.

The constant terms are 10 and 2.

The table can be formed as:

Method of Cross Multiplication

On solving this table we get,

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get;

\(\frac{x}{1 × 2 - 7 × 10} = \frac{y}{10 × 3 - 2 × 1} = \frac{1}{1 × 7 - 3 × 1}\)

\(\frac{x}{-68} = \frac{y}{28} = \frac{1}{4}\)

On equating x term with the constant term, we get; x = \(\frac{-68}{4}\) = -17

On equating y term with the constant, we get; y = \(\frac{28}{4}\) = 7





9th Grade Math

From Method of Cross Multiplication to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Concept of Fractions |Concept of Half| Concept of One Fourth|Two Third

    Nov 07, 24 01:37 AM

    One-half
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 06, 24 11:59 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  3. 2nd Grade Division Word Problems | Worksheet on Division Word Problems

    Nov 05, 24 01:49 PM

    Division Word Problems Grade 2

    Read More

  4. 2nd Grade Division Worksheet | Dividing 2-digit by 1-digit Numbers

    Nov 05, 24 01:15 AM

    Division Fact 12 ÷ 3
    Dividing 2-digit by 1-digit Numbers

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Nov 05, 24 12:55 AM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More