Loading [MathJax]/jax/output/HTML-CSS/jax.js

Mean of Ungrouped Data

The mean of data indicate how the data are distributed around the central part of the distribution. That is why the arithmetic numbers are also known as measures of central tendencies.


Mean Of Raw Data:       

The mean (or arithmetic mean) of n observations (variates) x1, x2, x3, x4, ....., xn is given by

Mean = x1+x2+x3+x4+....+xnn

In words, mean = Sum of the VariablesTotal Number of Variates

Symbolically, A = xin; i = 1, 2, 3, 4, ...., n.

Note: xinA, i,e., sum of variates = mean × number of variates. 


Solved Examples on Mean of Ungrouped Data or mean of the Arrayed Data:

1. A student scored 80%, 72%, 50%, 64% and 74% marks in five subjects in an examination. Find the mean percentage of marks obtained by him.

Solution:

Here, observations in percentage are

x1 = 80, x2 = 72, x3 = 50, x4 = 64, x5 = 74.

Therefore, their mean A = x1+x2+x3+x4+x55

                                   = 80+72+50+64+745

                                   = 3405

                                   = 68.

Therefore, mean percentage of marks obtained by the student was 68%.


2. Sachin Tendulkar scores the following runs in six innings of a series.

                            45, 2, 78, 20, 116, 55.

Find the mean of the runs scored by the batsman in the series.

Solution:

Here, the observations are x1 = 45, x2 = 2, x3 = 78, x4 = 20, x5 = 116, x6 = 55.

Therefore, the required mean = x1+x2+x3+x4+x5+x66

                                            = 45+2+78+20+116+556

                                            = 3166

                                            = 52.7.

Therefore, the mean of the runs scored by Sachin Tendulkar in the series is 52.7.

Note: The mean of the runs scored by the batsman in six innings indicates the batsman's form, and one can expect the batsman to score about 53 runs in his next outing. However, it may so happen that the batsman scores a duck (0) or a century (100) the next time he bats.

Formula for Finding the Mean of the Ungrouped Data

3. Find the mean of the first six whole numbers.

Solution:

The first six whole numbers are 0, 1, 2, 3, 4, 5.

Therefore, the mean = x1+x2+x3+x4+x5+x66

                               = 0+1+2+3+4+56

                               = 156

                               = 52

                               = 2.5.


4. The mean of 6 variates is 8. Five of them are 8, 15, 0, 6, 11. Find the sixth variate. 

Solution:

Let the sixth variate be a. Then by definition,

Mean = x1+x2+x3+x4+x5+x66

         = 8+15+0+6+11+a6

         = 40+a6

According to the problem, 

    40+a6 = 8

⟹ 40 + a = 48

⟹ a = 48 - 40

⟹ a = 8

Therefore, the sixth variate = 8.


5. The mean length of ropes in 40 coils is 14 m. A new coil is added in which the length of the rope is 18 m. What is the mean length of the ropes now?

Solution:

For the original 40 coils of rope, 

Mean (length) A = x1+x2+x3+......+x4040

⟹ 14 = x1+x2+x3+......+x4040

⟹ x1 + x2 + x3 + ...... + x40 = 560 ................ (i)

For the 41 coils of rope, 

A = x1+x2+x3+......+x40+x4141

   = 560+1841, [From (i)]

   = 57841

   = 14.1 (Approx).

Therefore, the required mean length 14.1 m approximately. 


6. The mean height of the 10 girls of a class is 1.4 m and the mean height of the 30 boys of the calss is 1.45 m. Find the mean height of the 40 students of the class.

Solution:

The mean height of the girls = Sum of the Heights of the GirlsNumber of Girls

According to the problem, 

Sum of the Heights of the Girls10 = 1.4 m

⟹ Sum of the Heights of the Girls = 1.4 × 10 m = 14 m.


The mean height of the boys = Sum of the Heights of the BoysNumber of Boys

According to the problem, 

Sum of the Heights of the Boys30 = 1.45 m 

⟹ Sum of the Heights of the Boys = 1.45 × 30 m = 43.5 m.

Therefore, the sum of the heights of the 40 students of the class = (14 + 43.5) m = 57.5 m. 

Therefore, the mean height of 40 students of the class

             = The Sum of the Heights of the 40 Students of the Class40

             = 57.540

             = 1.44 m. 


7. The mean age of 10 boys is calculated to be 16 yers. Later it was detected that one boy's age was taken 12 years more than the actule and another boy's age was taken 7 years less than the actual. Find the correct mean of the ages of the boys.

Solution:

We have, mean = x1+x2+x3+......+xnn

According to the problem, 

x1+x2+x3+......+xn10 = 16

⟹ x1 + x2 + x3 + ...... + x10 = 16 × 10

⟹ x1 + x2 + x3 + ...... + x10 = 160 ............ (i)

Therefore, the actual sum of the ages = 160 - 12 + 7 [Using (i)]

Therefore, the correct mean = Correct Sum of the AgesNumber of Boys

                                         = 15510

                                         = 15.5 years.







9th Grade Math

From Mean of Ungrouped Data to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation |Definition,Examples,Problems | Video

    May 04, 25 03:47 PM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

    May 03, 25 04:38 PM

    Multiplication of Decimal Numbers
    The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total…

    Read More

  3. Magic Square | Add upto 15 | Add upto 27 | Fibonacci Sequence | Videos

    May 03, 25 10:50 AM

    check the magic square
    In a magic square, every row, column and each of the diagonals add up to the same total. Here is a magic square. The numbers 1 to 9 are placed in the small squares in such a way that no number is repe

    Read More

  4. Division by 10 and 100 and 1000 |Division Process|Facts about Division

    May 03, 25 10:41 AM

    Divide 868 by 10
    Division by 10 and 100 and 1000 are explained here step by step. when we divide a number by 10, the digit at ones place of the given number becomes the remainder and the digits at the remaining places…

    Read More

  5. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More