Subscribe to our YouTube channel for the latest videos, updates, and tips.


Focal Distance of a Point on the Hyperbola

What is the focal distance of a point on the hyperbola?

The sum of the focal distance of any point on a hyperbola is constant and equal to the length of the transverse axis of the hyperbola.

Let P (x, y) be any point on the hyperbola x2a2 - y2b2 = 1.a

Let MPM' be the perpendicular through P on directrices ZK and Z'K'. Now by definition we get,

SP = e PM

⇒ SP = e NK

⇒ SP = e (CN - CK)

⇒ SP = e(x - ae)

⇒ SP = ex - a ………………..…….. (i)

and

S'P = e PM'

⇒ S'P = e (NK')

⇒ S'P = e (CK' + CN)

⇒ S'P = e (ae + x)

⇒ S'P = a + ex ………………..…….. (ii)

Therefore, S'P - SP = (a + ex) - (ex - a) = a + ex - ex + a = 2a = transverse axis.

Hence, the sum of the focal distance of a point P (x, y) on the hyperbola x2a2 - y2b2 = 1 is constant and equal to the length of the transverse axis (i.e., 2a) of the hyperbola.

Note: This property leads to an alternative definition of hyperbola as follows:

If a point moves on a plane in such a way that the sum of its distances from two fixed points on the plane is always a constant then the locus traced out by the moving point on the plane is called a hyperbola and the two fixed points are the two foci of the hyperbola.


Solved example to find the focal distance of any point on a hyperbola:

Find the focal distance of a point on the hyperbola 9x2 - 16y2 - 18x + 32y - 151 = 0.

Solution:

The given equation of the hyperbola is 9x2 - 16y2 - 18x + 32y - 151 = 0.

From the above equation we get,

9x2 - 18x - 16y2 + 32y = 151

⇒ 9(x2 - 2x) - 16(y2 - 2y) = 151

⇒ 9(x2 - 2x + 1) - 16(y2 - 2y + 1) = 151 + 9 - 16

⇒ 9(x - 1)2 - 16(y - 1)2 = 144

(x1)216 - (y1)29 = 1 ………………….. (i)

Now transfering the origin at (1, 1) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by x and y, we have

x = X + 1 and y = Y + 1 ………………….. (ii)

Using these relations, equation (i) reduces to

X242 - Y232 = 1 ……………………… (iii)

This is the form of X2a2 - Y2b2 = 1 (a2 > b2 ) where a = 4 and b = 3

Now, we get that a > b.

Hence, the equationX242 - Y232 = 1 represents an hyperbola whose transverse axes along X and conjugate axes along Y axes.

Therefore, the focal distance of a point on the hyperbola 9x2 - 16y2 - 18x + 32y - 151 = 0 is transverse axis = 2a = 2 4 = 8 units.





11 and 12 Grade Math

From Focal Distance of a Point on the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Average Word Problems | Worksheet on Average Questions with Answers

    May 20, 25 05:40 PM

    In average word problems we will solve different types of problems on basic concept of average. 1. Richard scored 80, 53, 19, 77, 29 and 96 runs in 6 innings in a series. Find the average runs scored…

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  3. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  4. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  5. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More