Decimal as Fraction

We will discuss how to express decimal as fraction.


0.5 = \(\frac{5}{10}\)

0.05 = \(\frac{5}{100}\)

0.005 = \(\frac{5}{1000}\)

2.5 = \(\frac{25}{10}\)

2.25 = \(\frac{225}{100}\)

2.275 = \(\frac{2275}{1000}\)


To convert a decimal into a fraction, remember the following steps.

Step I: Write the number as the numerator omitting the decimal point.

Step II: Write 1 in the denominator and add zeroes to it equal to the number of decimal places.


Note: When a decimal is read, each digit of the decimal part is read separately.


Let us consider some of the following examples on expressing a decimal as a fraction.

1. Convert 2.12 into a fraction.

Solution:

2.12 = 2 + 1 tenth + 2 hundredths

       = 2 + \(\frac{1}{10}\) + \(\frac{2}{100}\)

       = 2 + \(\frac{1 × 10}{10 × 10}\) + \(\frac{2}{100}\)

       = 2 + \(\frac{10}{100}\) + \(\frac{2}{100}\)

       = 2 + \(\frac{10 + 2}{100}\)

       = 2 + \(\frac{12}{100}\)

       = 2 + \(\frac{3}{25}\)

       = 2\(\frac{3}{25}\)




We write the place value of digits of decimal and then add as usual.


2. Convert 5.125 into a fraction.

Solution:

5.125 = 5 + 1 tenth + 2 hundredths + 5 thousandths

        = 5 + \(\frac{1}{10}\) + \(\frac{2}{100}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{1 × 100}{10 × 100}\) + \(\frac{2 × 10}{100 × 10}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{1 × 100}{10 × 100}\) + \(\frac{2 × 10}{100 × 10}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{100}{1000}\) + \(\frac{20}{1000}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{100 + 20 + 5}{1000}\)

        = 5 + \(\frac{125}{1000}\)

        = 5 + \(\frac{1}{8}\)

        = 5\(\frac{1}{8}\)






We write the place value of digits of decimal and then add as usual.


Express the following decimals in expanded form:

3.62 = 3 × 1 + \(\frac{6}{10}\) + \(\frac{2}{10}\)

75.86 = 7 × 10 + 5 × 1 + \(\frac{8}{10}\) + \(\frac{6}{10}\)

216.894 = 2 × 100 + 1 × 10 + 6 × 1 + \(\frac{8}{10}\) + \(\frac{9}{100}\) + \(\frac{4}{1000}\)

0.562 = \(\frac{5}{10}\) + \(\frac{6}{100}\) + \(\frac{2}{1000}\)


Express the following as decimal numbers:

For examples:

\(\frac{6}{10}\) + \(\frac{3}{100}\)                                      =             0.63

\(\frac{6}{10}\) + \(\frac{3}{100}\) + \(\frac{5}{1000}\)                           =             0.635

4 × 1 + \(\frac{3}{10}\) + \(\frac{2}{100}\)                         =              4.32

7 × 10 + 2 × 1 + \(\frac{8}{10}\) + \(\frac{9}{100}\)           =             72.89


Convert the following decimals to fractions in their lowest terms.

For examples:

0.36 = \(\frac{36}{100}\) = \(\frac{9}{25}\) [\(\frac{36 ÷ 4}{100 ÷ 4}\) = \(\frac{9}{25}\)]

5.65 = 5 + 0.65 = 5 + \(\frac{65}{100}\) = 5\(\frac{65}{100}\) = 5\(\frac{13}{20}\)]

14.05 = 14 + 0.05 = 14 + \(\frac{5}{100}\) = 14\(\frac{5}{100}\) = 14\(\frac{1}{20}\)]

3.004 = 3 + 0.004 = 3 + \(\frac{4}{1000}\) = 3\(\frac{4}{1000}\) = 3\(\frac{1}{250}\)]

Note: We always reduce the fraction converted from a decimal to its lowest form.


Questions and Answers on Conversion of a Decimals to a Fractions:

I. Convert the following decimals as fractions or mixed numerals:

(i) 0.6

(ii) 0.09

(iii) 3.65

(iv) 12.132

(v) 16.5

(vi) 5.46

(vii) 12.29

(viii) 0.008

(ix) 8.08

(x) 162.434

 

II. Express the following in the expanded form.

(i) 46.25

(ii) 115.32

(iii) 14.568

(iv) 19.005

(v) 77.777

 

III. Write as decimals:

(i) 2 × 1 + \(\frac{7}{10}\) + \(\frac{4}{100}\)

(ii) 3 × 10 + 5 × 1 + \(\frac{8}{10}\) + \(\frac{3}{1000}\)

(iii) 7 × 100 + 4 × 10 + 5 × 1 + \(\frac{4}{1000}\)

(iv) 9 × 100 + \(\frac{7}{10}\)

(v) \(\frac{5}{100}\) + \(\frac{8}{1000}\)





4th Grade Math Activities

From Decimal as Fraction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 21, 25 09:09 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  2. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More

  3. 3rd Grade Multiplication Worksheet | Grade 3 Multiplication Questions

    Jan 20, 25 02:31 PM

    3rd Grade Multiplication Riddle
    In 3rd Grade Multiplication Worksheet we will solve how to multiply 2-digit number by 1-digit number without regrouping, multiply 2-digit number by 1-digit number with regrouping, multiply 3-digit num…

    Read More

  4. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 20, 25 12:28 AM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  5. 3rd Grade Multiplication Word Problems Worksheet With Answers | Math

    Jan 19, 25 11:29 PM

    In 3rd Grade Multiplication Word Problems Worksheet we will solve different types of problems on multiplication, multiplication word problems on 3-digits number by 1-digit number and multiplication wo…

    Read More