# Decimal as Fraction

We will discuss how to express decimal as fraction.

0.5 = $$\frac{5}{10}$$

0.05 = $$\frac{5}{100}$$

0.005 = $$\frac{5}{1000}$$

2.5 = $$\frac{25}{10}$$

2.25 = $$\frac{225}{100}$$

2.275 = $$\frac{2275}{1000}$$

To convert a decimal into a fraction, remember the following steps.

Step I: Write the number as the numerator omitting the decimal point.

Step II: Write 1 in the denominator and add zeroes to it equal to the number of decimal places.

Note: When a decimal is read, each digit of the decimal part is read separately.

Let us consider some of the following examples on expressing a decimal as a fraction.

1. Convert 2.12 into a fraction.

Solution:

 2.12 = 2 + 1 tenth + 2 hundredths        = 2 + $$\frac{1}{10}$$ + $$\frac{2}{100}$$        = 2 + $$\frac{1 × 10}{10 × 10}$$ + $$\frac{2}{100}$$        = 2 + $$\frac{10}{100}$$ + $$\frac{2}{100}$$        = 2 + $$\frac{10 + 2}{100}$$        = 2 + $$\frac{12}{100}$$        = 2 + $$\frac{3}{25}$$        = 2$$\frac{3}{25}$$ We write the place value of digits of decimal and then add as usual.

2. Convert 5.125 into a fraction.

Solution:

 5.125 = 5 + 1 tenth + 2 hundredths + 5 thousandths         = 5 + $$\frac{1}{10}$$ + $$\frac{2}{100}$$ + $$\frac{5}{1000}$$         = 5 + $$\frac{1 × 100}{10 × 100}$$ + $$\frac{2 × 10}{100 × 10}$$ + $$\frac{5}{1000}$$         = 5 + $$\frac{1 × 100}{10 × 100}$$ + $$\frac{2 × 10}{100 × 10}$$ + $$\frac{5}{1000}$$         = 5 + $$\frac{100}{1000}$$ + $$\frac{20}{1000}$$ + $$\frac{5}{1000}$$         = 5 + $$\frac{100 + 20 + 5}{1000}$$         = 5 + $$\frac{125}{1000}$$         = 5 + $$\frac{1}{8}$$         = 5$$\frac{1}{8}$$ We write the place value of digits of decimal and then add as usual.

Express the following decimals in expanded form:

3.62 = 3 × 1 + $$\frac{6}{10}$$ + $$\frac{2}{10}$$

75.86 = 7 × 10 + 5 × 1 + $$\frac{8}{10}$$ + $$\frac{6}{10}$$

216.894 = 2 × 100 + 1 × 10 + 6 × 1 + $$\frac{8}{10}$$ + $$\frac{9}{100}$$ + $$\frac{4}{1000}$$

0.562 = $$\frac{5}{10}$$ + $$\frac{6}{100}$$ + $$\frac{2}{1000}$$

Express the following as decimal numbers:

For examples:

$$\frac{6}{10}$$ + $$\frac{3}{100}$$                                      =             0.63

$$\frac{6}{10}$$ + $$\frac{3}{100}$$ + $$\frac{5}{1000}$$                           =             0.635

4 × 1 + $$\frac{3}{10}$$ + $$\frac{2}{100}$$                         =              4.32

7 × 10 + 2 × 1 + $$\frac{8}{10}$$ + $$\frac{9}{100}$$           =             72.89

Convert the following decimals to fractions in their lowest terms.

For examples:

0.36 = $$\frac{36}{100}$$ = $$\frac{9}{25}$$ [$$\frac{36 ÷ 4}{100 ÷ 4}$$ = $$\frac{9}{25}$$]

5.65 = 5 + 0.65 = 5 + $$\frac{65}{100}$$ = 5$$\frac{65}{100}$$ = 5$$\frac{13}{20}$$]

14.05 = 14 + 0.05 = 14 + $$\frac{5}{100}$$ = 14$$\frac{5}{100}$$ = 14$$\frac{1}{20}$$]

3.004 = 3 + 0.004 = 3 + $$\frac{4}{1000}$$ = 3$$\frac{4}{1000}$$ = 3$$\frac{1}{250}$$]

Note: We always reduce the fraction converted from a decimal to its lowest form.

Questions and Answers on Conversion of a Decimals to a Fractions:

I. Convert the following decimals as fractions or mixed numerals:

(i) 0.6

(ii) 0.09

(iii) 3.65

(iv) 12.132

(v) 16.5

(vi) 5.46

(vii) 12.29

(viii) 0.008

(ix) 8.08

(x) 162.434

II. Express the following in the expanded form.

(i) 46.25

(ii) 115.32

(iii) 14.568

(iv) 19.005

(v) 77.777

III. Write as decimals:

(i) 2 × 1 + $$\frac{7}{10}$$ + $$\frac{4}{100}$$

(ii) 3 × 10 + 5 × 1 + $$\frac{8}{10}$$ + $$\frac{3}{1000}$$

(iii) 7 × 100 + 4 × 10 + 5 × 1 + $$\frac{4}{1000}$$

(iv) 9 × 100 + $$\frac{7}{10}$$

(v) $$\frac{5}{100}$$ + $$\frac{8}{1000}$$

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Adding 1-Digit Number | Understand the Concept one Digit Number

Sep 18, 24 03:29 PM

Understand the concept of adding 1-digit number with the help of objects as well as numbers.

2. ### Addition of Numbers using Number Line | Addition Rules on Number Line

Sep 18, 24 02:47 PM

Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

3. ### Counting Before, After and Between Numbers up to 10 | Number Counting

Sep 17, 24 01:47 AM

Counting before, after and between numbers up to 10 improves the child’s counting skills.

4. ### Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

Sep 17, 24 12:10 AM

Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…