# Condition for Common Root or Roots of Quadratic Equations

We will discuss how to derive the conditions for common root or roots of quadratic equations that can be two or more.

Condition for one common root:

Let the two quadratic equations are a1x^2 + b1x + c1 = 0 and a2x^2 + b2x + c2 = 0

Now we are going to find the condition that the above quadratic equations may have a common root.

Let α be the common root of the equations a1x^2 + b1x + c1 = 0 and a2x^2 + b2x + c2 = 0. Then,

a1α^2 + b1α + c1 = 0

a2α^2 + b2α + c2 = 0

Now, solving the equations a1α^2 + b1α + c1 = 0, a2α^2 + b2α + c2 = 0 by cross-multiplication, we get

α^2/b1c2 - b2c1 = α/c1a2 - c2a1 = 1/a1b2 - a2b1

⇒ α = b1c2 - b2c1/c1a2 - c2a1, (From first two)

Or, α = c1a2 - c2a1/a1b2 - a2 b1, (From 2nd and 3rd)

⇒ b1c2 - b2c1/c1a2 - c2a1 = c1a2 - c2a1/a1b2 - a2b1

⇒ (c1a2 - c2a1)^2 = (b1c2 - b2c1)(a1b2 - a2b1), which is the required condition for one root to be common of two quadratic equations.

The common root is given by α = c1a2 - c2a1/a1b2 - a2b1 or, α = b1c2 - b2c1/c1q2 - c2a1

Note: (i) We can find the common root by making the same coefficient of x^2 of the given equations and then subtracting the two equations.

(ii) We can find the other root or roots by using the relations between roots and coefficients of the given equations

Condition for both roots common:

Let α, β be the common roots of the quadratic equations a1x^2 + b1x + c1 = 0 and a2x^2 + b2x + c2 = 0. Then

α + β = -b1/a1, αβ = c1/a1 and α + β = -b2/a2, αβ = c2/a2

Therefore, -b/a1 = - b2/a2 and c1/a1 = c2/a2

⇒ a1/a2 = b1/b2 and a1/a2 = c1/c2

⇒ a1/a2 = b1/b2 = c1/c2

This is the required condition.

Solved examples to find the conditions for one common root or both common roots of quadratic equations:

1. If the equations x^2 + px + q = 0 and x^2 + px + q = 0 have a common root and p ≠ q, then prove that p + q + 1 = 0.

Solution:

Let α be the common root of x^2 + px + q = 0 and x^2 + px + q = 0.

Then,

α^2 + pα + q = 0 and α^2 + pα + q = 0.

Subtracting second form the first,

α(p - q) + (q - p) = 0

⇒ α(p - q) - (p - q) = 0

⇒ (p - q)(α - 1) = 0

⇒ (α - 1) = 0, [p - q ≠0, since, p ≠ q]

⇒ α = 1

Therefore, from the equation α^2 + pα + q = 0 we get,

1^2 + p(1) + q = 0

⇒ 1 + p + q = 0

⇒ p + q + 1 = 0              Proved

2. Find the value(s) of λ so that the equations x^2 - λx - 21 = 0 and x^2 - 3λx + 35 = 0 may have one common root.

Solution:

Let α be the common root of the given equations, then

α^2 - λα - 21 = 0 and α^2 - 3λα + 35 = 0.

Subtracting second form the first, we get

2λα - 56 = 0

2λα = 56

α = 56/2λ

α = 28/λ

Putting this value of α in α^2 - λα - 21 = 0, we get

(28/λ)^2 - λ * 28/λ - 21 = 0

(28/λ)^2 - 28 - 21 = 0

(28/λ)^2 - 49 = 0

16 - λ^2 = 0

λ^2 = 16

λ = 4, -4

Therefore, the required values of λ are 4, -4.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

Feb 28, 24 04:07 PM

There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

2. ### Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

Feb 28, 24 01:43 PM

The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

3. ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

Feb 27, 24 02:43 PM

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

4. ### Fraction of a Whole Numbers | Fractional Number |Examples with Picture

Feb 24, 24 04:11 PM

Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…