Subscribe to our YouTube channel for the latest videos, updates, and tips.
Here we will prove that a parallelogram, whose diagonals are of equal length, is a rectangle.
Given: PQRS is a parallelogram in which PQ ∥ SR, PS ∥ QR and PR = QS.
To prove: PQRS is a parallelogram, i.e., in the parallelogram PQRS, one angle, say ∠QPS = 90°.
Proof:
In ∆PQR and ∆RSP,
∠RPQ = ∠PRS (Since, SR ∥ PQ),
∠QRP = ∠SPR (Since, PS ∥ QR),
PR = PR
Therefore, ∆PQR ≅ ∆RSP, (By AAS criterion of congruency)
Therefore, QR = PS (CPCTC).
In ∆PQR and ∆QPS,
QR = PS
PR = QS (Given),
PQ = PQ.
Therefore, ∆PQR ≅ ∆QPS (By SSS criterion of congruency)
∠PQR = ∠QPS (CPCTC).
But ∠PQR + ∠QPS = 180° (Since, QR ∥ PS)
Therefore, ∠PQR = ∠QPS = 90° (Proved)
From A Parallelogram, whose Diagonals are of Equal Length, is a Rectangle to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
May 18, 25 04:33 PM
May 17, 25 05:37 PM
May 17, 25 04:04 PM
May 17, 25 03:47 PM
May 16, 25 11:13 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.