Here we will discuss about the Theorem of Joint Variation with the detailed explanation.
Theorem of Joint Variation: If x ∝ y when z is constant and x ∝ z when y is constant, then x ∝ yz when both y and z vary.
Proof: Since x ∝ y when z is constant Therefore x = ky where k = constant of variation and is independent to the changes of x and y.
Again, x ∝ z when y is constant.
or, ky ∝ z when y is constant (since, x = ky).
or, k ∝ z (y is constant).
or, k = mz where m is a constant which is independent to the changes of k and z.
Now, the value of k is independent to the changes of x and y. Hence, the value of m is independent to the changes of x, y and z.
Therefore x = ky = myz (since, k = mz)
where m is a constant whose value does not depend on x, y and z.
Therefore x ∝ yz when both y and z vary.
Note: (i) The above theorem can be extended for a longer number of variables. For example, if A ∝ B when C and D are constants, A ∝ C when B and D are constants and A ∝ D when B and C are constants, thee A ∝ BCD when B, C and D all vary.
(ii) If x ∝ y when z is constant and x ∝ 1/Z when y is constant, then x ∝ y when both y and z vary.
Theorem of Joint Variation
(i) If A ∝ B, then B ∝ A.
(ii) If A ∝ B and B∝ C, then A ∝ C.
(iii) If A ∝ B, then Aᵇ ∝ Bᵐ where m is a constant.
(iv) If A ∝ BC, then B ∝ A/C and C ∝ A/B.
(v) If A ∝ C and B ∝ C, then A + B ∝ C and AB ∝ C²
(vi) If A ∝ B and C ∝ D, then AC ∝ BD and A/C ∝ B/D
Now we are going to proof the useful results with stepbystep detailed explanation
Proof: (i) If A ∝ B, then B ∝ A.
Since, A ∝ B Therefore A = kB, where k = constant.
or, B = 1/K ∙ A Therefore B ∝ A. (since,1/K = constant)
Proof: (ii) If A ∝ B and B ∝ C, then A ∝ C.
Since, A ∝ B Therefore A = mB where, m = constant
Again, B ∝ C Therefore B = nC where n= constant.
Therefore A= mB = mnC = kC where k = mn = constant, as m and n are both Constants.
Therefore A ∝ C.
Proof: (iii) If A ∝ B, then Aᵇ ∝ Bᵐ where m is a constant.
Since A ∝ B Therefore A = kB where k= constant.
Aᵐ = KᵐBᵐ = n ∙ Bᵐ where n = kᵐ = constant, as k and m are both constants.
Therefore Aᵐ ∝ Bᵐ.
Results (iv), (v) and (vi) can be deduced by similar procedure.
Summarisation:
(i) If A varies directly as B, then A ∝ B or, A = kB where k is the constant of variation. Conversely, if A = kB i.e., A/B = k where k is a constant, then A varies directly as B.● Variation
11 and 12 Grade Math
From Theorem of Joint Variation to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.