The properties of a rectangle, rhombus and square are discussed here using figure.

Prove that the diagonals of a rectangle are equal and bisect each other.

Let ABCD be a rectangle whose diagonals AC and BD intersect at the point 0.

From ∆ ABC and ∆ BAD,

AB = BA (common)

∠ABC = ∠BAD (each equal to 90o)

BC = AD (opposite sides of a rectangle).

Therefore, ∆ ABC ≅ ∆ BAD (by SAS congruence)

⇒ AC = BD.

Hence, the diagonals of a rectangle are equal.

From ∆ OAB and ∆ OCD,

∠OAB = ∠OCD (alternate angles)

∠OBA = ∠ODC (alternate angles)

AB = CD (opposite sides of a rectangle)

Therefore, ∆OAB ≅ ∆ OCD. (by ASA congruence)

⇒ OA = OC and OB = OD.

This shows that the diagonals of a rectangle bisect each other.

Hence, the diagonals of a rectangle are equal and bisect each other.

Prove that the diagonals of a rhombus bisect each other at right angles.

Let ABCD be a rhombus whose diagonals AC and BD intersect at the point O.

We know that the diagonals of a parallelogram bisect each other.

Also, we know that every rhombus is a parallelogram.

So, the diagonals of a rhombus bisect each other.

Therefore, OA = OC and OB = OD

From ∆ COB and ∆ COD,

CB = CD (sides of a rhombus)

CO = CO (common).

OB = OD (proved)

Therefore, ∆ COB ≅ ∆ COD (by SSS congruence)

⇒ ∠COB = ∠COD

But, ∠COB + ∠COD = 2 right angles (linear pair)

Therefore, ∠COB = ∠COD = 1 right angle.

Hence, the diagonals of a rhombus bisect each other at right angles.

Prove that the diagonals of a square are equal and bisect each other at right angles.

We know that the diagonals of a rectangle are equal.

Also, we know that every square is a rectangle.

So, the diagonals of a square are equal.

Again, we know that the diagonals of a rhombus bisect each other at right angles. But, every square is a rhombus.

So, the diagonals of a square bisect each other at right angles.

Hence, the diagonals of a square are equal and bisect each other at right angles.

If the diagonals of a quadrilateral are equal then it is not necessarily a rectangle.

In the adjacent figure, ABCD is a quadrilateral in which diagonal AC = diagonal BD, but ABCD is not a rectangle.

If the diagonals of a quadrilateral intersect at right angles then it is not necessarily a rhombus.

**Parallelogram**

**Properties of a Rectangle Rhombus and Square**

**Practice Test on Parallelogram**

**Parallelogram - Worksheet**

**8th Grade Math Practice** **From Properties of a Rectangle Rhombus and Square to HOME PAGE**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.