Lowest Common Multiple of Polynomials

How to find the lowest common multiple of polynomials?

To find the lowest common multiple (L.C.M.) of polynomials, we first find the factors of polynomials by the method of factorization and then adopt the same process of finding L.C.M.


Solved examples to find lowest common factor of polynomials:

1. Find the L.C.M. of 4a2 - 25b2 and 6a2 + 15ab.

Solution:

Factorizing 4a2 - 25b2 we get,

(2a)2 - (5b)2, by using the identity a2 - b2.

= (2a + 5b) (2a - 5b)


Also, factorizing 6a2 + 15ab by taking the common factor '3a', we get

= 3a(2a + 5b)

Therefore, the L.C.M. of 4a2 - 25b2 and 6a2 + 15ab is 3a(2a + 5b) (2a - 5b)



2. Find the L.C.M. of x2y2 - x2 and xy2 - 2xy - 3x.

Solution:

Factorizing x2y2 - x2 by taking the common factor 'x2' we get,

x2(y2 - 1)

Now by using the identity a2 - b2.

x2(y2 - 12)

= x2(y + 1) (y - 1)

Also, factorizing xy2 - 2xy - 3x by taking the common factor 'x' we get,

x(y2 - 2y - 3)

= x(y2 - 3y + y - 3)

= x[y(y - 3) + 1(y - 3)]

= x(y - 3) (y + 1)

Therefore, the L.C.M. of x2y2 - x2 and xy2 - 2xy - 3x is x2(y + 1) (y - 1) (y - 3).



3. Find the L.C.M. of x2 + xy, xz + yz and x2 + 2xy + y2.

Solution:

Factorizing x2 + xy by taking the common factor 'x', we get

x(x + y)

Factorizing xz + yz by taking the common factor 'z', we get

z(x + y)

Factorizing x2 + 2xy + y2 by using the identity (a + b)2, we get

= (x)2 + 2 (x) (y) + (y)2

= (x + y)2

= (x + y) (x + y)

Therefore, the L.C.M. of x2 + xy, xz + yz and x2 + 2xy + y2 is xz(x + y) (x + y).






8th Grade Math Practice

From Lowest Common Multiple of Polynomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More