Properties of Perfect Squares


The properties of perfect squares are explained here in each property with examples.

Property 1:

Numbers ending in 2, 3, 7 or 8 is never a perfect square but on the other hand, all the numbers ending in 1, 4, 5, 6, 9, 0 are not square numbers.

For example:

The numbers 10, 82, 93, 187, 248 end in 0, 2, 3, 7, 8 respectively.

So, none of them is a perfect square.


Property 2:



A number ending in an odd number of zeros is never a perfect square.

For example:

The numbers 160, 4000, 900000 end in one zero, three zeros and five zeros respectively.

So, none of them is a perfect square.


Property 3:

The square of an even number is always even.

For example:

2² = 4, 4² = 16, 6² = 36, 8² = 64, etc.


Property 4:

The square of an odd number is always odd.

For example:

1² = 1, 3² = 9, 5² = 25, 7² = 49, 9² = 81, etc.


Property 5:

The square of a proper fraction is smaller than the fraction.

For example:

(2/3)² = (2/3 × 2/3) = 4/9 and 4/9 < 2/3, since (4 × 3) < (9 × 2).


Property 6:

For every natural number n, we have

(n + 1)² - n² = (n + 1 + n)(n + 1 - n) = {(n + 1) + n}.

Therefore, {(n + 1)² - n²} = {(n + 1) + n}.

For example:

(i) {1 + 3 + 5 + 7 + 9} = sum of first 5 odd numbers = 5²

(ii) {1 + 3 + 5 + 7 + 9 + 11 + 13 + 15} = sum of first 8 odd numbers = 8²


Property 7:

For every natural number n, we have

sum of the first n odd numbers = n²

For example:

(i) {1 + 3 + 5 + 7 + 9} = sum of first 5 odd numbers = 5²

(ii) {1 + 3 + 5 + 7 + 9 + 11 + 13 + 15} = sum of first 8 odd numbers = 8²


Property 8 (Pythagorean Triplets):

Three natural numbers m, n, p are said to form a Pythagorean triplet (m, n, p) if (m² + n²) = p².

Note:

For every natural number m > 1, we have (2m, m² – 1, m² + 1) as a Pythagorean triplet.

For example:

(i) Putting m = 4 in (2m, m² – 1, m² + 1) we get (8, 15, 17) as a Pythagorean triplet.

(ii) Putting m = 5 in (2m, m² – 1, m² + 1) we get (10, 24, 26) as a Pythagorean triplet.


Solved examples on the properties of perfect squares;

1. Without adding, find the sum (1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17).

Solution:


(1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17) = sum of first 9 odd numbers = 9² = 81


2. Express 49 as the sum of seven odd numbers.

Solution:


49 = 7² = sum of first seven odd numbers

= (1 + 3 + 5 + 7 + 9 + 11 + 13).


3. Find the Pythagorean triplet whose smallest member is 12.

Solution:


For every natural number m > 1. (2m, m² – 1, m² + 1) is a Pythagorean triplet.

Putting 2m = 12, i.e., m = 6, we get the triplet (12, 35, 37).


 Square

Square

Perfect Square or Square Number

Properties of Perfect Squares


 Square - Worksheets

Worksheet on Squares











8th Grade Math Practice

From Properties of Perfect Squares to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Relation between Diameter Radius and Circumference |Problems |Examples

    Apr 22, 24 05:19 PM

    Relation between Radius and Diameter of a Circle
    Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

    Read More

  2. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 22, 24 01:35 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  3. Preschool Math Activities | Colorful Preschool Worksheets | Lesson

    Apr 21, 24 10:57 AM

    Preschool Math Activities
    Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 20, 24 05:29 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More