Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Formulae for Compound Interest

We have learnt about compound interest in previous topics of this chapter. Under this topic, we’ll be dealing from formulae that are useful in calculating compound interest in different cases. Following are the cases and formulae used in them to calculate the amount payable at the principal sum.

If ‘P’ is the principal sum, i.e., amount taken as loan.

 ‘R’ is the rate percent which the bank/ lender is charging at the principal amount.

‘T’ is the time duration in which you have to repay the amount,

And ‘A’ will be the amount to be paid in following cases using following formulae:


Case 1: When the interest is compounded yearly:

A = P(1+R100)T

Case 2: When the interest is compounded half yearly:

A = P(1+R2100)2T

Case 3: When the interest is compounded quarterly:

A = P(1+R4100)4T


Case 4: When the time is in fraction of a year, say \{2^{\frac{1}{5}}\), then:

A = P(1+R100)2(1+R5100)


Case 5: If the rate of interest in 1st year, 2nd year, 3rd year,…, nth year are R1%, R2%, R3%,…, Rn% respectively. Then,

A = P(1+R1100)(1+R2100)(1+R3100)...(1+Rn100)


Case 6: Present worth of Rs x due ‘n’ years hence is given by:

Present worth = 11+R100

A fact that we all know very well is that interest is the difference between amount and principal sum, i.e.,

                        Interest = Amount – Principal


Now let us solve some problems based upon these formulae:

1. A man borrowed $20,000 from a bank on an interest of 10% p.a. compounded annually for 3 years. Calculate the compound amount and interest.

Solution:

R = 10%

P = $20,000

T = 3 years

We know that, A = P(1+R100)T

                     A = 20,000(1+10100)3

                     A = 20,000(110100)3

                     A = 20,000(1110)3

                     A = 20,000(13311000)

               A = 26,620

So, amount = $26,620

Interest = amount – principal amount

            = $26,620 – $20,000

            = $6,620

2. Find the compound amount on $10,000 if the interest rate is 7% per annum compounded annually for 5 years. Also calculate the compound interest.

Solution:

              principal, P = $10,000

                            R = 7%

                            T = 5 years

We know that, A = P(1+R100)T

A = 10,000(1+7100)5

A = 10,000(107100)5

A = $14,025.51

Also, interest = amount - principal

                    = $14,025.51 - $10,000

                    = $4,025.51


3. Find compound interest on amount $2,00,000 invested at 6% per annum, compound semi-annually for 10 years.

Solution:

we know that:

                        A = P(1+R100)T

                        A = 2,00,000(1+6100)20

                        A = 2,00,000(106100)20

                        A = $6,41,427.09


Also, interest = amount – principal

                    = $6,41,427.09 - $2,00,000

                    = $4,41,427.09


4. If the interest rates for 1st, 2nd and 3rd are 5%, 10% and 15% respectively on a sum of $5,000. Then calculate the amount after 3 years.


Solution:

Principal = $5,000

        R1 = 5%

        R2 = 10%

        R3 = 15%

We know that, 

A = P(1+R1100)(1+R2100)(1+R3100)...(1+Rn100)


A = 5000(1+5100)(1+10100)(1+15100)

So, A = 5000(105100)(110100)(115100)

      A = $6,641.25

Also, interest = amount – principal

                    = $6,641.25 - $5,000

                    = $1.641.25

Compound Interest

Introduction to Compound Interest

Formulae for Compound Interest

Worksheet on Use of Formula for Compound Interest







9th Grade Math

From Formulae for Compound Interest to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Average Word Problems | Worksheet on Average Questions with Answers

    May 20, 25 05:40 PM

    In average word problems we will solve different types of problems on basic concept of average. 1. Richard scored 80, 53, 19, 77, 29 and 96 runs in 6 innings in a series. Find the average runs scored…

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  3. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  4. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  5. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More