Volume of Cuboid

Here we will learn how to solve the application problems on Volume of cuboid using the formula.


Formula for finding the volume of a cuboid

Volume of a Cuboid (V) = l × b × h;

Where l = Length, b = breadth and h = height.


1. A field is 15 m long and 12 m broad. At one corner of this field a rectangular well of dimensions 8 m × 2.5 m × 2 m is dug, and the dug-out soil is spread evenly over the rest of the field. Find the rise in the level of the rest of the field.

Solution:

Formula for Finding the Volume of a Cuboid

The volume of soil removed = The Volume of the Well

                                         = 8 m × 2.5 m × 2 m

                                         = 8 × 2.5 × 2 m3

                                         = 40 m3


Let the level of the rest of the field be raised by h.

Volume of the Cuboid of Dimensions

The volume of the soil spread evenly on the field

                            = Volume of the cuboid of dimensions + Volume of the cuboid of dimensions

                            = 2.5 m × 4 m × h + 12.5 m × 12 m × h

                            = (2.5 m × 4 m × h + 12.5 m × 12 m × h)

                            = (10h + 150h) m2

                            = 160h m2

Therefore, 160h m2 = 40 m3

⟹ h = 40160 m

⟹ h = 14 m

Therefore, the rise in the level = 14 m

                                            = 25 cm


2. Squares each side 8 cm are cut off from the four corners of a sheet of tin measuring 48 cm by 36 cm. The remaining portion of the sheet is folded to form a tank open at the top. What will be the capacity of the tank?

Solution:

To make the tank, NGHP has to folded up along NP, LMQK along MQ, EFNM along MN and IJQP.

Capacity of the Tank
The Capacity of the Tank

Now, MN = QP = (48 - 2 × 8) cm = 32 cm, and

NP = MQ = (36 - 2 × 8) cm = 20 cm.

EM = KQ = IP = GN = 8 cm.

Therefore, the capacity of the tank = 32 × 20 × 8 cm3

                                                   = 5120 cm3

                                                   = 5.12 litres [Since, 1 litre = 1000 cm3]





9th Grade Math

From Volume of Cuboid to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More