Sum of the Interior Angles of an n-sided Polygon

Here we will discuss the theorem of sum of the interior angles of an n-sided polygon and some related example problems.

The sum of the interior angles of a polygon of n sides is equal to (2n - 4) right angles.

Given: Let PQRS .... Z be a polygon of n sides.

To prove: ∠P + ∠Q + ∠R + ∠S + ..... + ∠Z = (2n – 4) 90°.

Construction: Take any point O inside the polygon. Join OP, OQ, OR, OS, ....., OZ.

Sum of the Interior Angles of a Polygon

Proof:

Statement

Reason

1. As the polygon has n sides, n triangles are formed, namely, ∆OPQ, ∆QR, ...., ∆OZP.

1. On each side of the polygon one triangle has been drawn.

2. The sum of all the angles of the n triangles is 2n right angles.

2. The sum of the angles of each triangle is 2 right angles.

3. ∠P + ∠Q + ∠R + ..... + ∠Z + (sum of all angles formed at O) = 2n right angles.

3. From statement 2.

4. ∠P + ∠Q + ∠R + ..... + ∠Z + 4 right angles = 2n right angles.

4. Sum of angles around the point O is 4 right angles.

5. ∠P + ∠Q + ∠R + ..... + ∠Z

           = 2n right angles - 4 right angles

           = (2n – 4) right angles

           = (2n – 4) 90°.        (Proved)

5. From statement 4.

Note:

1. In a regular polygon of n sides, all angles are equal.

Therefore, each interior angle = \(\frac{(2n - 4) × 90°}{n}\).


2. A quadrilateral is a polygon for which n = 4.

Therefore, the sum of interior angles of a quadrilateral = (2 × 4 – 4) × 90° = 360°

 

Solved examples on finding the sum of the interior angles of an n-sided polygon:

1. Find the sum of the interior angles of a polygon of seven sides.

Solution:

Here, n = 7.

Sum of the interior angles = (2n – 4) × 90°

                                      = (2 × 7 - 4) × 90°

                                      = 900°

Therefore, the sum of the interior angles of a polygon is 900°.


2. Sum of the interior angles of a polygon is 540°. Find the number of sides of the polygon.

Solution:

Let the number of sides = n.

Therefore, (2n – 4) × 90° = 540°

⟹ 2n - 4 = \(\frac{540°}{90°}\)

⟹ 2n - 4 = 6

⟹ 2n = 6 + 4

⟹ 2n = 10

⟹ n = \(\frac{10}{2}\)

⟹ n = 5

Therefore, the number of sides of the polygon is 5.


3. Find the measure of each interior angle of a regular octagon.

Solution:

Here, n = 8.

The measure of each interior angle = \(\frac{(2n – 4) × 90°}{n}\)

                                                   = \(\frac{(2 × 8 – 4) × 90°}{8}\)

                                                   = \(\frac{(16 – 4) × 90°}{8}\)

                                                   = \(\frac{12 × 90°}{8}\)

                                                   = 135°

Therefore, the measure of each interior angle of a regular octagon is 135°.


4. The ratio of the number of sides of two regular polygons is 3:4, and the ratio of the sum of their interior angles is 2:3. Find the number of sides of each polygon.

Solution:

Let the number of sides of the two regular polygons be n\(_{1}\) and n\(_{2}\).

According to the problem,

\(\frac{n_{1}}{n_{2}}\) = \(\frac{3}{4}\)

⟹ n\(_{1}\) = \(\frac{3n_{2}}{4}\) ........... (i)

Again, \(\frac{2(n_{1} – 2) × 90°}{2(n_{2} – 2) × 90°}\) = \(\frac{2}{3}\)

⟹ 3(n\(_{1}\) – 2) = 2(n\(_{2}\) – 2)

⟹ 3n\(_{1}\) = 2n\(_{2}\) + 2

⟹ 3 × \(\frac{3n_{2}}{4}\) = 2n\(_{2}\) + 2

⟹ 9n\(_{2}\) = 8n\(_{2}\) + 8

Therefore, n\(_{2}\) = 8.

Substituting the value of n\(_{2}\) = 8 in (i) we get,

n\(_{1}\) = \(\frac{3}{4}\) × 8

⟹ n\(_{1}\) = 6.

Therefore, the number of sides of the two regular polygons be 6 and 8.




9th Grade Math

From Sum of the Interior Angles of an n-sided Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 13, 24 01:03 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More