Sum of the Exterior Angles of an n-sided Polygon

Here we will discuss the theorem of the sum of all exterior angles of an n-sided polygon and sum related example problems.

If the sides of a convex polygon are produced in the same order, the sum of all the exterior angles so formed is equal to four right angles.

Given: Let ABCD .... N be a convex polygon of n sides, whose sides have been produced in the same order.

Sum of the Exterior Angles of an n-sided Polygon

To prove: The sum of the exterior angles is 4 right angles, i.e., ∠a’ + ∠b’ + ∠c’ + ..... + ∠n’ = 4 × 90° = 360°.

Proof:

Statement

Reason

1. ∠a + ∠a’ = 2 right angles. Similarly, ∠b + ∠b’ = 2 right angles, ...., ∠n + ∠n’ = 2 right angles.

1. They form a linear pair.

2. (∠a + ∠b + ∠c + ..... + ∠n) + (∠a’ + ∠b’ + ∠c’ + ..... + ∠n’) = 2n right angles.

2. The polygon has n sides, and using statement 1.

3. (2n – 4) right angles + (∠a’ + ∠b’ + ∠c’ + ..... + ∠n’) = 2n right angles.

3. ∠a + ∠b + ∠c + ..... + ∠n = (2n – 4) right angles

4. ∠a’ + ∠b’ + ∠c’ + ..... + ∠n’

                = [2n - (2n – 4)] right angles.

                = 4 right angles

                = 4 × 90°

                = 360°.        (Proved)

4. From statement 3.

Note:

1. In a regular polygon of n sides, each exterior angle = \(\frac{360°}{n}\).

2. If each exterior angle of a regular polygon is x°, the polygon has \(\frac{360}{x}\) sides.

3. The greater the number of sides of a regular polygon, the greater is the value of each interior angle and the smaller is the value of each exterior angle.

Solved examples on finding the sum of the interior angles of an n-sided polygon:

1. Find the measure of each exterior angle of a regular pentagon.

Solution:

Here, n = 5.

Each exterior angle = \(\frac{360°}{n}\)

                             = \(\frac{360°}{5}\)

                             = 72°

Therefore, the measure of each exterior angle of a regular pentagon is 72°.


2. Find the number of sides of a regular polygon if each of its exterior angles is (i) 30°, (ii) 14°.

Solution:

We know, total number of sides of a regular polygon is \(\frac{360}{x}\) where, each exterior angle is x°.

(i) Here, exterior angle x = 30°

Number of sides = \(\frac{360°}{30°}\)

                        = 12

Therefore, there are 12 sides of the regular polygon.


(ii) Here, exterior angle x = 14°

Number of sides = \(\frac{360°}{14°}\)

                        = 25\(\frac{5}{7}\), is not a natural number

Therefore, such a regular polygon does not exist.


3. Find the number of sides of a regular polygon if each of its interior angles is 160°.

Solution:

Each interior angle = 160°

Therefore, each exterior angle = 180° - 160° = 20°

We know, total number of sides of a regular polygon is \(\frac{360}{x}\) where, each exterior angle is x°.

Number of sides = \(\frac{360°}{20°}\) = 18

Therefore, there are 18 sides of a regular polygon.


4. Find the number of sides of a regular polygon if each interior angle is double the exterior angle.

Solution:

Let each exterior angle = x°

Therefore, each interior angle = 180° - x°

According to the problem, each interior angle is double the exterior angle i.e.,

180° - x° = 2x°

⟹ 180° = 3x°

⟹ x° = 60°

Therefore, the number of sides = \(\frac{360}{x}\)

                                             = \(\frac{360}{60}\)

                                             = 6

Therefore, there are 6 sides of a regular polygon when each interior angle is double the exterior angle.


5. Two alternate sides of a regular polygon, when produced, meet at right angles. Find:

(i) each exterior angle of the polygon,

(ii) the number of sides of the polygon

Solution:

(i) Let ABCD ...... N be a regular polygon of n sides and each interior angle = x°

Alternate Sides of a Regular Polygon

According to the problem, ∠CPD = 90°

∠PCD = ∠PDC = 180° - x°

Therefore, from ∆CPD,

180° - x° + 180° - x° + 90° = 180°

⟹ 2x° = 270°

⟹ x° = 135°

Therefore, each exterior angle of the polygon = 180° - 135° = 45°.

(ii) Number of sides = \(\frac{360°}{45°}\) = 8.


6. There are two regular polygons with number of sides equal to (n – 1) and (n + 2). Their exterior angles differ by 6°. Find the value of n.

Solution:

Each exterior angle of the first polygon = \(\frac{360°}{ n – 1}\).

Each exterior angle of the second polygon = \(\frac{360°}{ n + 2}\).

According to the problem, each exterior angle of the first polygon and the second polygon differs by 6° i.e., \(\frac{360°}{ n – 1}\) - \(\frac{360°}{ n + 2}\).

⟹ 360° (\(\frac{1}{ n – 1}\) - \(\frac{1}{ n + 2}\)) = 6°

⟹ \(\frac{1}{ n – 1}\) - \(\frac{1}{ n + 2}\) = \(\frac{6°}{360°}\)

⟹ \(\frac{(n + 2) – (n – 1)}{(n – 1)(n + 2)}\) = \(\frac{1}{60}\)

⟹ \(\frac{3}{n^{2} + n - 2}\) = \(\frac{1}{60}\)

⟹ n\(^{2}\) + n – 2 = 180

⟹ n\(^{2}\) + n – 182 = 0

 ⟹ n\(^{2}\) + 14n – 13n – 182 = 0

⟹ n(n + 14) – 13(n + 14) = 0

⟹ (n + 14)(n - 13) = 0

Therefore, n = 13 (since n ≠ -14).




9th Grade Math

From Sum of the Exterior Angles of an n-sided Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More