Subscribe to our YouTube channel for the latest videos, updates, and tips.


Perimeter and Area of Quadrilateral

Here we will discuss about the perimeter and area of a quadrilateral and some example problems.

Perimeter and Area of Quadrilateral

In the quadrilateral PQRS, PR is a diagonal, QM ⊥ PR and SN ⊥ PR.

Then, area (A) of the quadrilateral PQRS = Area of ∆PQR + Area of ∆SPR

                                               = (12 × QM × PR) + (12 × SN × PR)

                                               = 12 (QM + SN) × PR

Also, area (A) of the quadrilateral PQRS = Area of ∆PQR + Area of ∆SPR

                     = s(sa)(sb)(se) + S(Sc)(Sd)(Se)

where, s = a + b + e2 and S = c + d + e2

Area and Perimeter of Quadrilateral

Perimeter (P) = a + b + c + d


Solved example problems on finding the perimeter and area of quadrilateral:

1. PQRS is a quadrilateral whose diagonal QS is perpendicular to the side PQ. If PQ = 4.5 cm, PS = 7.5 cm and the distance of R from QS is 1.5 cm, find the area of the quadrilateral.

Finding the Perimeter and Area of Quadrilateral

Solution:

In the right-angled ∆PQS,

PS2 = PQ2 + QS2

⟹ (7.5)2 cm2 = (4.5)2 cm2 + QS2

⟹ QS2 = [(7.5)2 – (4.5)2] cm2

⟹ QS2 = (7.5 + 4.5)(7.5 - 4.5)  cm2

⟹ QS2 = 12 × 3  cm2

⟹ QS2 = 36  cm2

⟹ QS = 6  cm.

Therefore, area of the quadrilateral PQRS = Area of the ∆PQS + Area of the ∆QRS

                                                             = 12 PQ × QS + 12 RT × QS

                                                             = 12(PQ + RT) × QS

                                                             = 12(4.5 + 1.5) × 6 cm2

                                                             = 12 × 6 × 6 cm2

                                                             = 12 × 36 cm2

                                                             = 18 cm2.


2. PQRS is a quadrilateral in which PQ = 4 cm, QC = 5 cm, RS = 7 cm, SP = 6 cm and the diagonal PR = 8 cm. Find its area.

Problems on Perimeter and Area of Quadrilateral

Solution:

Area of the quadrilateral PQRS = Area of the ∆PQR + Area of the ∆SPR

In the ∆PQR, let a = PQ = 4 cm, b = QR = 5 cm and c = RP = 8 cm.

Therefore, s = 12(a + b + c)

= 12(4 + 5 + 8) cm

= 172 cm.

Area of the ∆PQR = s(sa)(sb)(sc)

                          = 172(1724)(1725)(1728) cm2

                         = 172927212 cm2

                         = 1797116 cm2

                         = 34119 cm2.

In the ∆SPR, let a = PS = 6 cm, b = RS = 7 cm and c = RP = 8 cm.

Therefore, S = 12(a + b + c)

= 12(6 + 7 + 8) cm

= = 212 cm.

Area of the ∆SPR = S(Sa)(Sb)(Sc)

                          = 212(2126)(2127)(2128) cm2

                          = 212927252 cm2

                          = 2197516 cm2

                          = 34735 cm2.

Therefore, area of the quadrilateral PQRS = (34119 + 34735) cm2.

                                                             = 34(10.9 + 27.1) cm2

                                                             = 34 × 38 cm2

                                                             = 572 cm2

                                                             = 28.5 cm2







9th Grade Math

From Perimeter and Area of Quadrilateral to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  2. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More