Perimeter and Area of Quadrilateral

Here we will discuss about the perimeter and area of a quadrilateral and some example problems.

Perimeter and Area of Quadrilateral

In the quadrilateral PQRS, PR is a diagonal, QM ⊥ PR and SN ⊥ PR.

Then, area (A) of the quadrilateral PQRS = Area of ∆PQR + Area of ∆SPR

                                               = (\(\frac{1}{2}\) × QM × PR) + (\(\frac{1}{2}\) × SN × PR)

                                               = \(\frac{1}{2}\) (QM + SN) × PR

Also, area (A) of the quadrilateral PQRS = Area of ∆PQR + Area of ∆SPR

                     = \(\sqrt{s(s - a)(s - b)(s - e)}\) + \(\sqrt{S(S - c)(S - d)(S - e)}\)

where, s = \(\frac{\textrm{a + b + e}}{2}\) and S = \(\frac{\textrm{c + d + e}}{2}\)

Area and Perimeter of Quadrilateral

Perimeter (P) = a + b + c + d


Solved example problems on finding the perimeter and area of quadrilateral:

1. PQRS is a quadrilateral whose diagonal QS is perpendicular to the side PQ. If PQ = 4.5 cm, PS = 7.5 cm and the distance of R from QS is 1.5 cm, find the area of the quadrilateral.

Finding the Perimeter and Area of Quadrilateral

Solution:

In the right-angled ∆PQS,

PS\(^{2}\) = PQ\(^{2}\) + QS\(^{2}\)

⟹ (7.5)\(^{2}\) cm\(^{2}\) = (4.5)\(^{2}\) cm\(^{2}\) + QS\(^{2}\)

⟹ QS\(^{2}\) = [(7.5)\(^{2}\) – (4.5)\(^{2}\)] cm\(^{2}\)

⟹ QS\(^{2}\) = (7.5 + 4.5)(7.5 - 4.5)  cm\(^{2}\)

⟹ QS\(^{2}\) = 12 × 3  cm\(^{2}\)

⟹ QS\(^{2}\) = 36  cm\(^{2}\)

⟹ QS = 6  cm.

Therefore, area of the quadrilateral PQRS = Area of the ∆PQS + Area of the ∆QRS

                                                             = \(\frac{1}{2}\) PQ × QS + \(\frac{1}{2}\) RT × QS

                                                             = \(\frac{1}{2}\)(PQ + RT) × QS

                                                             = \(\frac{1}{2}\)(4.5 + 1.5) × 6 cm\(^{2}\)

                                                             = \(\frac{1}{2}\) × 6 × 6 cm\(^{2}\)

                                                             = \(\frac{1}{2}\) × 36 cm\(^{2}\)

                                                             = 18 cm\(^{2}\).


2. PQRS is a quadrilateral in which PQ = 4 cm, QC = 5 cm, RS = 7 cm, SP = 6 cm and the diagonal PR = 8 cm. Find its area.

Problems on Perimeter and Area of Quadrilateral

Solution:

Area of the quadrilateral PQRS = Area of the ∆PQR + Area of the ∆SPR

In the ∆PQR, let a = PQ = 4 cm, b = QR = 5 cm and c = RP = 8 cm.

Therefore, s = \(\frac{1}{2}\)(a + b + c)

= \(\frac{1}{2}\)(4 + 5 + 8) cm

= \(\frac{17}{2}\) cm.

Area of the ∆PQR = \(\sqrt{s(s - a)(s - b)(s - c)}\)

                          = \(\sqrt{\frac{17}{2}(\frac{17}{2} - 4)(\frac{17}{2} - 5)(\frac{17}{2} - 8)}\) cm\(^{2}\)

                         = \(\sqrt{\frac{17}{2} ∙ \frac{9}{2} ∙ \frac{7}{2} ∙ \frac{1}{2}}\) cm\(^{2}\)

                         = \(\sqrt{\frac{17 ∙ 9 ∙ 7 ∙ 1}{16}}\) cm\(^{2}\)

                         = \(\frac{3}{4}\sqrt{119}\) cm\(^{2}\).

In the ∆SPR, let a = PS = 6 cm, b = RS = 7 cm and c = RP = 8 cm.

Therefore, S = \(\frac{1}{2}\)(a + b + c)

= \(\frac{1}{2}\)(6 + 7 + 8) cm

= = \(\frac{21}{2}\) cm.

Area of the ∆SPR = \(\sqrt{S(S - a)(S - b)(S - c)}\)

                          = \(\sqrt{\frac{21}{2}(\frac{21}{2} - 6)(\frac{21}{2} - 7)(\frac{21}{2} - 8)}\) cm\(^{2}\)

                          = \(\sqrt{\frac{21}{2} ∙ \frac{9}{2} ∙ \frac{7}{2} ∙ \frac{5}{2}}\) cm\(^{2}\)

                          = \(\sqrt{\frac{21 ∙ 9 ∙ 7 ∙ 5}{16}}\) cm\(^{2}\)

                          = \(\frac{3}{4}\sqrt{735}\) cm\(^{2}\).

Therefore, area of the quadrilateral PQRS = (\(\frac{3}{4}\sqrt{119}\) + \(\frac{3}{4}\sqrt{735}\)) cm\(^{2}\).

                                                             = \(\frac{3}{4}\)(10.9 + 27.1) cm\(^{2}\)

                                                             = \(\frac{3}{4}\) × 38 cm\(^{2}\)

                                                             = \(\frac{57}{2}\) cm\(^{2}\)

                                                             = 28.5 cm\(^{2}\)







9th Grade Math

From Perimeter and Area of Quadrilateral to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 10 Times Table | Printable Multiplication Table | Video

    Mar 21, 25 03:46 PM

    worksheet on multiplication of 10 times table
    Worksheet on 10 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  3. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  4. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  5. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More