Perimeter and Area of Quadrilateral

Here we will discuss about the perimeter and area of a quadrilateral and some example problems.

Perimeter and Area of Quadrilateral

In the quadrilateral PQRS, PR is a diagonal, QM ⊥ PR and SN ⊥ PR.

Then, area (A) of the quadrilateral PQRS = Area of ∆PQR + Area of ∆SPR

                                               = (\(\frac{1}{2}\) × QM × PR) + (\(\frac{1}{2}\) × SN × PR)

                                               = \(\frac{1}{2}\) (QM + SN) × PR

Also, area (A) of the quadrilateral PQRS = Area of ∆PQR + Area of ∆SPR

                     = \(\sqrt{s(s - a)(s - b)(s - e)}\) + \(\sqrt{S(S - c)(S - d)(S - e)}\)

where, s = \(\frac{\textrm{a + b + e}}{2}\) and S = \(\frac{\textrm{c + d + e}}{2}\)

Area and Perimeter of Quadrilateral

Perimeter (P) = a + b + c + d


Solved example problems on finding the perimeter and area of quadrilateral:

1. PQRS is a quadrilateral whose diagonal QS is perpendicular to the side PQ. If PQ = 4.5 cm, PS = 7.5 cm and the distance of R from QS is 1.5 cm, find the area of the quadrilateral.

Finding the Perimeter and Area of Quadrilateral

Solution:

In the right-angled ∆PQS,

PS\(^{2}\) = PQ\(^{2}\) + QS\(^{2}\)

⟹ (7.5)\(^{2}\) cm\(^{2}\) = (4.5)\(^{2}\) cm\(^{2}\) + QS\(^{2}\)

⟹ QS\(^{2}\) = [(7.5)\(^{2}\) – (4.5)\(^{2}\)] cm\(^{2}\)

⟹ QS\(^{2}\) = (7.5 + 4.5)(7.5 - 4.5)  cm\(^{2}\)

⟹ QS\(^{2}\) = 12 × 3  cm\(^{2}\)

⟹ QS\(^{2}\) = 36  cm\(^{2}\)

⟹ QS = 6  cm.

Therefore, area of the quadrilateral PQRS = Area of the ∆PQS + Area of the ∆QRS

                                                             = \(\frac{1}{2}\) PQ × QS + \(\frac{1}{2}\) RT × QS

                                                             = \(\frac{1}{2}\)(PQ + RT) × QS

                                                             = \(\frac{1}{2}\)(4.5 + 1.5) × 6 cm\(^{2}\)

                                                             = \(\frac{1}{2}\) × 6 × 6 cm\(^{2}\)

                                                             = \(\frac{1}{2}\) × 36 cm\(^{2}\)

                                                             = 18 cm\(^{2}\).


2. PQRS is a quadrilateral in which PQ = 4 cm, QC = 5 cm, RS = 7 cm, SP = 6 cm and the diagonal PR = 8 cm. Find its area.

Problems on Perimeter and Area of Quadrilateral

Solution:

Area of the quadrilateral PQRS = Area of the ∆PQR + Area of the ∆SPR

In the ∆PQR, let a = PQ = 4 cm, b = QR = 5 cm and c = RP = 8 cm.

Therefore, s = \(\frac{1}{2}\)(a + b + c)

= \(\frac{1}{2}\)(4 + 5 + 8) cm

= \(\frac{17}{2}\) cm.

Area of the ∆PQR = \(\sqrt{s(s - a)(s - b)(s - c)}\)

                          = \(\sqrt{\frac{17}{2}(\frac{17}{2} - 4)(\frac{17}{2} - 5)(\frac{17}{2} - 8)}\) cm\(^{2}\)

                         = \(\sqrt{\frac{17}{2} ∙ \frac{9}{2} ∙ \frac{7}{2} ∙ \frac{1}{2}}\) cm\(^{2}\)

                         = \(\sqrt{\frac{17 ∙ 9 ∙ 7 ∙ 1}{16}}\) cm\(^{2}\)

                         = \(\frac{3}{4}\sqrt{119}\) cm\(^{2}\).

In the ∆SPR, let a = PS = 6 cm, b = RS = 7 cm and c = RP = 8 cm.

Therefore, S = \(\frac{1}{2}\)(a + b + c)

= \(\frac{1}{2}\)(6 + 7 + 8) cm

= = \(\frac{21}{2}\) cm.

Area of the ∆SPR = \(\sqrt{S(S - a)(S - b)(S - c)}\)

                          = \(\sqrt{\frac{21}{2}(\frac{21}{2} - 6)(\frac{21}{2} - 7)(\frac{21}{2} - 8)}\) cm\(^{2}\)

                          = \(\sqrt{\frac{21}{2} ∙ \frac{9}{2} ∙ \frac{7}{2} ∙ \frac{5}{2}}\) cm\(^{2}\)

                          = \(\sqrt{\frac{21 ∙ 9 ∙ 7 ∙ 5}{16}}\) cm\(^{2}\)

                          = \(\frac{3}{4}\sqrt{735}\) cm\(^{2}\).

Therefore, area of the quadrilateral PQRS = (\(\frac{3}{4}\sqrt{119}\) + \(\frac{3}{4}\sqrt{735}\)) cm\(^{2}\).

                                                             = \(\frac{3}{4}\)(10.9 + 27.1) cm\(^{2}\)

                                                             = \(\frac{3}{4}\) × 38 cm\(^{2}\)

                                                             = \(\frac{57}{2}\) cm\(^{2}\)

                                                             = 28.5 cm\(^{2}\)







9th Grade Math

From Perimeter and Area of Quadrilateral to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More