Perimeter and Area of Mixed Figures

Here we will discuss about the Perimeter and area of mixed figures.

1. The length and breadth of a rectangular field is 8 cm and 6 cm respectively. On the shorter sides of the rectangular field two equilateral triangles are constructed outside. Two right-angled isosceles triangles are constructed outside the rectangular field, with the longer sides as the hypotenuses. Find the total area and perimeter of the figure.

Solution:

Perimeter and Area of Mixed Figures

The figure consists of the following.

(i) The rectangular field ABCD, whose area = 8 × 6 cm\(^{2}\) = 48 cm\(^{2}\)

(ii) Two equilateral triangles BCG and ADH. For each, area = \(\frac{√3}{4}\) × 6\(^{2}\) cm\(^{2}\) = 9√3 cm\(^{2}\)

(iii) Two isosceles right-angled triangles CDE and ABF, whose areas are equal.

IF CE = ED = x then x\(^{2}\) + x\(^{2}\) = 8\(^{2}\) cm\(^{2}\) (by Pythagoras’ theorem)

or, 2x\(^{2}\) = 64 cm\(^{2}\)

or, x\(^{2}\) = 32 cm\(^{2}\)

Therefore, x = 4√2 cm

Therefore, area of the ∆CDE = \(\frac{1}{2}\) CE × DE

                                         = \(\frac{1}{2}\) x\(^{2}\)

                                         = \(\frac{1}{2}\) (4√2)\(^{2}\) cm2

                                         = \(\frac{1}{2}\) 32 cm\(^{2}\)

                                         = 16 cm\(^{2}\)

Therefore, area of the figure = area of the rectangular field ABCD + 2 × area of the ∆BCG + 2 × area of the ∆CDE

                                          = (48 + 2 × 9√3 + 2 × 16) cm\(^{2}\)

                                          = (80 + 18√3) cm\(^{2}\)

                                          = (80 + 18 × 1.73) cm\(^{2}\)

                                          = (80 + 31.14) cm\(^{2}\)

                                          = 111.14 cm\(^{2}\)

Perimeter of the figure = length of the boundary of the figure

                                  = AF + FB + BG + GC + CE + ED + DH + HA

                                  = 4 × CE + 4 × BG

                                  = (4 × 4√2 + 4 × 6) cm

                                  = 8(3 + 2√2) cm

                                  = 8(3 + 2 × 1.41) cm

                                  = 8 × 5.82 cm

                                  = 46.56 cm


2. The dimension of a field are 110 m × 80 m. The field is to be converted into a garden, leaving a path 5 m broad around the garden. Find the total cost of making the garden if the cost per square metre is Rs 12.

Solution:

Rectangular Field Problem

For the garden, length = (110 – 2 × 5) m = 100 m, and

                     Breadth = (80 – 2 × 5) m = 70 m

Therefore, area of the garden = 100 × 70 m\(^{2}\) = 7000 m\(^{2}\)

Therefore, total cost of making the garden = 7000 × Rs 12 = Rs 84000


3. A square-shaped piece of paper is cut into two pieces along a line joining a corner and a point on an opposite edge. If the ratio of the areas of the two pieces be 3:1, find the ratio of the perimeters of the smaller piece and the original piece of paper.

Solution:

Let PQRS be the square-shaped piece of paper. Let its side measure a units.

Area of Square-shaped Piece of Paper

It is cut along PM. Let SM = b units

Area of the ∆MSP = \(\frac{1}{2}\) PS × SM = \(\frac{1}{2}\) ab square units.

Area of the square PQRS = a\(^{2}\) square units.

According to the question,

\(\frac{\textrm{area of the quadrilateral PQRM}}{\textrm{area of the ∆MSP}}\) = \(\frac{3}{1}\)

⟹ \(\frac{\textrm{area of the quadrilateral PQRM}}{\textrm{area of the ∆MSP}}\) + 1 = 4

⟹ \(\frac{\textrm{area of the quadrilateral PQRM + area of the ∆MSP}}{\textrm{area of the ∆MSP}}\) = 4

⟹ \(\frac{\textrm{area of the square PQRS}}{\textrm{area of the ∆MSP}}\) = 4

⟹ \(\frac{a^{2}}{\frac{\textrm{1}}{2} ab} = 4\)

⟹\(\frac{2a}{b}\) = 4

⟹ a = 2b

⟹ b = \(\frac{1}{2}\)a

Now, PM2 = PS2 + SM2; (by Pythagoras’ theorem)

Therefore, PM2 = a2 + b2

                       = a2 + (\(\frac{1}{2}\)a )2

                       = a2 + \(\frac{1}{4}\)a2

                       = \(\frac{5}{4}\)a2.

Therefore, PM2 = \(\frac{√5}{2}\)a.

Now, \(\frac{\textrm{perimeter of the ∆MSP}}{\textrm{perimeter of the square PQRS}}\) = \(\frac{\textrm{MS + PS + PM}}{\textrm{4a}}\)

                                         = \(\frac{\frac{1}{2}a + a +\frac{\sqrt{5}}{2}a}{4a}\)

                                        = \(\frac{(\frac{3 + \sqrt{5}}{2})a}{4a}\)

                                        = \(\frac{3 + √5}{8}\)

                                        = (3 + √5) : 8.


4. From a 20 cm × 10 cm plywood board an F-shaped block is cut out, as shown in the figure. What is the area of a face of the remaining board? Also find the length of the boundary of the block.

Application Problem on Plane Figure

Solution:

Clearly, the block is a combination of three rectangular blocks, as shown in the below figure.

Plane Figure Problem

Therefore, area of a face of the block = 20 × 3 cm\(^{2}\) + 3 × 2 cm\(^{2}\) + 7 × 3 cm\(^{2}\)

                                                      = 60 cm\(^{2}\) + 6 cm\(^{2}\) + 21 cm\(^{2}\)

                                                      = 87 cm\(^{2}\)

Area of a face of the uncut board = 20 × 10 cm\(^{2}\)

                                                = 200 cm\(^{2}\)

Therefore, area of a face of the remaining board = 200 cm\(^{2}\) - 87 cm\(^{2}\)

                                                                      = 113 cm\(^{2}\)

Required length of the boundary = (20 + 3 + 11 + 2 + 3 + 2 + 3 + 7 + 3 + 10) cm

                                               = 64 cm







9th Grade Math

From Perimeter and Area of Mixed Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 02:59 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  2. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  3. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  4. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  5. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More