Perimeter and Area of Mixed Figures

Here we will discuss about the Perimeter and area of mixed figures.

1. The length and breadth of a rectangular field is 8 cm and 6 cm respectively. On the shorter sides of the rectangular field two equilateral triangles are constructed outside. Two right-angled isosceles triangles are constructed outside the rectangular field, with the longer sides as the hypotenuses. Find the total area and perimeter of the figure.

Solution:

Perimeter and Area of Mixed Figures

The figure consists of the following.

(i) The rectangular field ABCD, whose area = 8 × 6 cm\(^{2}\) = 48 cm\(^{2}\)

(ii) Two equilateral triangles BCG and ADH. For each, area = \(\frac{√3}{4}\) × 6\(^{2}\) cm\(^{2}\) = 9√3 cm\(^{2}\)

(iii) Two isosceles right-angled triangles CDE and ABF, whose areas are equal.

IF CE = ED = x then x\(^{2}\) + x\(^{2}\) = 8\(^{2}\) cm\(^{2}\) (by Pythagoras’ theorem)

or, 2x\(^{2}\) = 64 cm\(^{2}\)

or, x\(^{2}\) = 32 cm\(^{2}\)

Therefore, x = 4√2 cm

Therefore, area of the ∆CDE = \(\frac{1}{2}\) CE × DE

                                         = \(\frac{1}{2}\) x\(^{2}\)

                                         = \(\frac{1}{2}\) (4√2)\(^{2}\) cm2

                                         = \(\frac{1}{2}\) 32 cm\(^{2}\)

                                         = 16 cm\(^{2}\)

Therefore, area of the figure = area of the rectangular field ABCD + 2 × area of the ∆BCG + 2 × area of the ∆CDE

                                          = (48 + 2 × 9√3 + 2 × 16) cm\(^{2}\)

                                          = (80 + 18√3) cm\(^{2}\)

                                          = (80 + 18 × 1.73) cm\(^{2}\)

                                          = (80 + 31.14) cm\(^{2}\)

                                          = 111.14 cm\(^{2}\)

Perimeter of the figure = length of the boundary of the figure

                                  = AF + FB + BG + GC + CE + ED + DH + HA

                                  = 4 × CE + 4 × BG

                                  = (4 × 4√2 + 4 × 6) cm

                                  = 8(3 + 2√2) cm

                                  = 8(3 + 2 × 1.41) cm

                                  = 8 × 5.82 cm

                                  = 46.56 cm


2. The dimension of a field are 110 m × 80 m. The field is to be converted into a garden, leaving a path 5 m broad around the garden. Find the total cost of making the garden if the cost per square metre is Rs 12.

Solution:

Rectangular Field Problem

For the garden, length = (110 – 2 × 5) m = 100 m, and

                     Breadth = (80 – 2 × 5) m = 70 m

Therefore, area of the garden = 100 × 70 m\(^{2}\) = 7000 m\(^{2}\)

Therefore, total cost of making the garden = 7000 × Rs 12 = Rs 84000


3. A square-shaped piece of paper is cut into two pieces along a line joining a corner and a point on an opposite edge. If the ratio of the areas of the two pieces be 3:1, find the ratio of the perimeters of the smaller piece and the original piece of paper.

Solution:

Let PQRS be the square-shaped piece of paper. Let its side measure a units.

Area of Square-shaped Piece of Paper

It is cut along PM. Let SM = b units

Area of the ∆MSP = \(\frac{1}{2}\) PS × SM = \(\frac{1}{2}\) ab square units.

Area of the square PQRS = a\(^{2}\) square units.

According to the question,

\(\frac{\textrm{area of the quadrilateral PQRM}}{\textrm{area of the ∆MSP}}\) = \(\frac{3}{1}\)

⟹ \(\frac{\textrm{area of the quadrilateral PQRM}}{\textrm{area of the ∆MSP}}\) + 1 = 4

⟹ \(\frac{\textrm{area of the quadrilateral PQRM + area of the ∆MSP}}{\textrm{area of the ∆MSP}}\) = 4

⟹ \(\frac{\textrm{area of the square PQRS}}{\textrm{area of the ∆MSP}}\) = 4

⟹ \(\frac{a^{2}}{\frac{\textrm{1}}{2} ab} = 4\)

⟹\(\frac{2a}{b}\) = 4

⟹ a = 2b

⟹ b = \(\frac{1}{2}\)a

Now, PM2 = PS2 + SM2; (by Pythagoras’ theorem)

Therefore, PM2 = a2 + b2

                       = a2 + (\(\frac{1}{2}\)a )2

                       = a2 + \(\frac{1}{4}\)a2

                       = \(\frac{5}{4}\)a2.

Therefore, PM2 = \(\frac{√5}{2}\)a.

Now, \(\frac{\textrm{perimeter of the ∆MSP}}{\textrm{perimeter of the square PQRS}}\) = \(\frac{\textrm{MS + PS + PM}}{\textrm{4a}}\)

                                         = \(\frac{\frac{1}{2}a + a +\frac{\sqrt{5}}{2}a}{4a}\)

                                        = \(\frac{(\frac{3 + \sqrt{5}}{2})a}{4a}\)

                                        = \(\frac{3 + √5}{8}\)

                                        = (3 + √5) : 8.


4. From a 20 cm × 10 cm plywood board an F-shaped block is cut out, as shown in the figure. What is the area of a face of the remaining board? Also find the length of the boundary of the block.

Application Problem on Plane Figure

Solution:

Clearly, the block is a combination of three rectangular blocks, as shown in the below figure.

Plane Figure Problem

Therefore, area of a face of the block = 20 × 3 cm\(^{2}\) + 3 × 2 cm\(^{2}\) + 7 × 3 cm\(^{2}\)

                                                      = 60 cm\(^{2}\) + 6 cm\(^{2}\) + 21 cm\(^{2}\)

                                                      = 87 cm\(^{2}\)

Area of a face of the uncut board = 20 × 10 cm\(^{2}\)

                                                = 200 cm\(^{2}\)

Therefore, area of a face of the remaining board = 200 cm\(^{2}\) - 87 cm\(^{2}\)

                                                                      = 113 cm\(^{2}\)

Required length of the boundary = (20 + 3 + 11 + 2 + 3 + 2 + 3 + 7 + 3 + 10) cm

                                               = 64 cm







9th Grade Math

From Perimeter and Area of Mixed Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 17, 24 02:25 AM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Worksheet on Tens and Ones | Math Place Value |Tens and Ones Questions

    Sep 16, 24 02:40 PM

    Tens and Ones
    In math place value the worksheet on tens and ones questions are given below so that students can do enough practice which will help the kids to learn further numbers.

    Read More