Loading [MathJax]/jax/output/HTML-CSS/jax.js

Nature of the Roots of a Quadratic Equation

We will discuss here about the different cases of discriminant to understand the nature of the roots of a quadratic equation.

We know that α and β are the roots of the general form of the quadratic equation ax2 + bx + c = 0 (a ≠ 0) .................... (i) then we get

α = bb24ac2a and β = b+b24ac2a

Here a, b and c are real and rational.

Then, the nature of the roots α and β of equation ax2 + bx + c = 0 depends on the quantity or expression i.e., (b2 - 4ac) under the square root sign.

Thus the expression (b2 - 4ac) is called the discriminant of the quadratic equation ax2 + bx + c = 0.

Generally we denote discriminant of the quadratic equation by ‘∆ ‘ or ‘D’.

Therefore,

Discriminant ∆ = b2 - 4ac

Depending on the discriminant we shall discuss the following cases about the nature of roots α and β of the quadratic equation ax2 + bx + c = 0.

When a, b and c are real numbers, a ≠ 0


Case I: b2 - 4ac > 0

When a, b and c are real numbers, a ≠ 0 and discriminant is positive (i.e., b2 - 4ac > 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real and unequal.

 

Case II: b2 - 4ac = 0

When a, b and c are real numbers, a ≠ 0 and discriminant is zero (i.e., b2 - 4ac = 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real and equal.

 

Case III: b2 - 4ac < 0

When a, b and c are real numbers, a ≠ 0 and discriminant is negative (i.e., b2 - 4ac < 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are unequal and imaginary. Here the roots α and β are a pair of the complex conjugates.

 

Case IV: b2 - 4ac > 0 and perfect square

When a, b and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real, rational unequal.

 

Case V: b2 - 4ac > 0 and not perfect square

When a, b and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax2 + bx + c = 0 are real, irrational and unequal.

Here the roots α and β form a pair of irrational conjugates.

 

Case VI: b2 - 4ac is perfect square and a or b is irrational

When a, b and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax2 + bx + c = 0 are irrational.


Notes:

(i) From Case I and Case II we conclude that the roots of the quadratic equation ax2 + bx + c = 0 are real when b2 - 4ac ≥ 0 or b2 - 4ac ≮ 0.

(ii) From Case I, Case IV and Case V we conclude that the quadratic equation with real coefficient cannot have one real and one imaginary roots; either both the roots are real when b2 - 4ac > 0 or both the roots are imaginary when b2 - 4ac < 0.

(iii) From Case IV and Case V we conclude that the quadratic equation with rational coefficient cannot have only one rational and only one irrational roots; either both the roots are rational when b2 - 4ac is a perfect square or both the roots are irrational b2 - 4ac is not a perfect square.

 

Various types of Solved examples on nature of the roots of a quadratic equation:

1. Find the nature of the roots of the equation 3x2 - 10x + 3 = 0 without actually solving them.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b2 - 4ac

= (-10)2 - 4  3  3

= 100 - 36

= 64 > 0.

Clearly, the discriminant of the given quadratic equation is positive and a perfect square.

Therefore, the roots of the given quadratic equation are real, rational and unequal.


2. Discuss the nature of the roots of the quadratic equation 2x2 - 8x + 3 = 0.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b2 - 4ac

= (-8)2 - 4  2 ∙ 3

= 64 - 24

= 40 > 0.

Clearly, the discriminant of the given quadratic equation is positive but not a perfect square.

Therefore, the roots of the given quadratic equation are real, irrational and unequal.

 

3. Find the nature of the roots of the equation x2 - 18x + 81 = 0 without actually solving them.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b2 - 4ac

= (-18)2 - 4  1  81

= 324 - 324

= 0.

Clearly, the discriminant of the given quadratic equation is zero and coefficient of x2 and x are rational.

Therefore, the roots of the given quadratic equation are real, rational and equal.


4. Discuss the nature of the roots of the quadratic equation x2 + x + 1 = 0.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b2 - 4ac

= 12 - 4  1  1

= 1 - 4

= -3 > 0.

Clearly, the discriminant of the given quadratic equation is negative.

Therefore, the roots of the given quadratic equation are imaginary and unequal.

Or,

The roots of the given equation are a pair of complex conjugates.




11 and 12 Grade Math 

From Nature of the Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  2. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  3. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  4. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  5. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More