Nature of the Roots of a Quadratic Equation

We will discuss here about the different cases of discriminant to understand the nature of the roots of a quadratic equation.

We know that α and β are the roots of the general form of the quadratic equation ax\(^{2}\) + bx + c = 0 (a ≠ 0) .................... (i) then we get

α = \(\frac{- b - \sqrt{b^{2} - 4ac}}{2a}\) and β = \(\frac{- b + \sqrt{b^{2} - 4ac}}{2a}\)

Here a, b and c are real and rational.

Then, the nature of the roots α and β of equation ax\(^{2}\) + bx + c = 0 depends on the quantity or expression i.e., (b\(^{2}\) - 4ac) under the square root sign.

Thus the expression (b\(^{2}\) - 4ac) is called the discriminant of the quadratic equation ax\(^{2}\) + bx + c = 0.

Generally we denote discriminant of the quadratic equation by ‘∆ ‘ or ‘D’.

Therefore,

Discriminant ∆ = b\(^{2}\) - 4ac

Depending on the discriminant we shall discuss the following cases about the nature of roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0.

When a, b and c are real numbers, a ≠ 0


Case I: b\(^{2}\) - 4ac > 0

When a, b and c are real numbers, a ≠ 0 and discriminant is positive (i.e., b\(^{2}\) - 4ac > 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and unequal.

 

Case II: b\(^{2}\) - 4ac = 0

When a, b and c are real numbers, a ≠ 0 and discriminant is zero (i.e., b\(^{2}\) - 4ac = 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and equal.

 

Case III: b\(^{2}\) - 4ac < 0

When a, b and c are real numbers, a ≠ 0 and discriminant is negative (i.e., b\(^{2}\) - 4ac < 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are unequal and imaginary. Here the roots α and β are a pair of the complex conjugates.

 

Case IV: b\(^{2}\) - 4ac > 0 and perfect square

When a, b and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, rational unequal.

 

Case V: b\(^{2}\) - 4ac > 0 and not perfect square

When a, b and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, irrational and unequal.

Here the roots α and β form a pair of irrational conjugates.

 

Case VI: b\(^{2}\) - 4ac is perfect square and a or b is irrational

When a, b and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are irrational.


Notes:

(i) From Case I and Case II we conclude that the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are real when b\(^{2}\) - 4ac ≥ 0 or b\(^{2}\) - 4ac ≮ 0.

(ii) From Case I, Case IV and Case V we conclude that the quadratic equation with real coefficient cannot have one real and one imaginary roots; either both the roots are real when b\(^{2}\) - 4ac > 0 or both the roots are imaginary when b\(^{2}\) - 4ac < 0.

(iii) From Case IV and Case V we conclude that the quadratic equation with rational coefficient cannot have only one rational and only one irrational roots; either both the roots are rational when b\(^{2}\) - 4ac is a perfect square or both the roots are irrational b\(^{2}\) - 4ac is not a perfect square.

 

Various types of Solved examples on nature of the roots of a quadratic equation:

1. Find the nature of the roots of the equation 3x\(^{2}\) - 10x + 3 = 0 without actually solving them.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b\(^{2}\) - 4ac

= (-10)\(^{2}\) - 4  3  3

= 100 - 36

= 64 > 0.

Clearly, the discriminant of the given quadratic equation is positive and a perfect square.

Therefore, the roots of the given quadratic equation are real, rational and unequal.


2. Discuss the nature of the roots of the quadratic equation 2x\(^{2}\) - 8x + 3 = 0.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b\(^{2}\) - 4ac

= (-8)\(^{2}\) - 4  2 ∙ 3

= 64 - 24

= 40 > 0.

Clearly, the discriminant of the given quadratic equation is positive but not a perfect square.

Therefore, the roots of the given quadratic equation are real, irrational and unequal.

 

3. Find the nature of the roots of the equation x\(^{2}\) - 18x + 81 = 0 without actually solving them.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b\(^{2}\) - 4ac

= (-18)\(^{2}\) - 4  1  81

= 324 - 324

= 0.

Clearly, the discriminant of the given quadratic equation is zero and coefficient of x\(^{2}\) and x are rational.

Therefore, the roots of the given quadratic equation are real, rational and equal.


4. Discuss the nature of the roots of the quadratic equation x\(^{2}\) + x + 1 = 0.

Solution:

Here the coefficients are rational.

The discriminant D of the given equation is

D = b\(^{2}\) - 4ac

= 1\(^{2}\) - 4  1  1

= 1 - 4

= -3 > 0.

Clearly, the discriminant of the given quadratic equation is negative.

Therefore, the roots of the given quadratic equation are imaginary and unequal.

Or,

The roots of the given equation are a pair of complex conjugates.




11 and 12 Grade Math 

From Nature of the Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Basic Division Facts | Division is the Inverse of Multiplication |Math

    Nov 03, 24 12:50 PM

    Basic Division Facts
    Some basic division facts are needed to follow for dividing numbers. The repeated subtraction of the same number is expressed by division in short form and in long form.

    Read More

  2. Division of Two-Digit by a One-Digit Numbers | Dividing Larger Numbers

    Oct 29, 24 01:27 PM

    Divide 2-Digit Number by 1-Digit Number
    In division of two-digit by a one-digit numbers are discussed here step by step. How to divide 2-digit numbers by single-digit numbers?

    Read More

  3. 2nd Grade Multiplication Worksheet | 2-Digit by 1-Digit | 3-Digit by 1

    Oct 29, 24 12:21 AM

    Times Table Crossword
    In worksheet on 2nd grade multiplication worksheet we will solve the problems on fact about multiplication, multiplication on number line, terms used in multiplication, multiplication of 1-digit numbe…

    Read More

  4. Multiplication and Division are Related | Multiplication Fact|Division

    Oct 29, 24 12:06 AM

    Division and Multiplication are Related
    Does multiplication and division are related? Yes, multiplication and division both are related to each other. A few examples are given are given below to show how they are related to each other.

    Read More

  5. Divide on a Number Line | Various Division Problems | Solved Examples

    Oct 28, 24 12:53 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More