Multiplication by 10, 20, 30, 40, 50, 60, 70, 80, 90
Multiplication by 10
To multiply a number by 10, we simply put a zero to the
right of the number.
1 × 10 = 10
2 × 10 = 20
3 × 10 = 30
4 × 10 = 40
5 × 10 = 50
6 × 10 = 60
7 × 10 =70
8 × 10 = 80
9 × 10 = 90
Multiplication by 20
To multiply a number by 20 we multiply the
given number by 2 and put one zero to the right of product.
1 × 20 = 20
2 × 20 = 40
3 × 20 = 60
4 × 20 = 80
5 × 20 = 100
6 × 20 = 120
7 × 20 = 140
8 × 20 = 160
9 × 20 = 180
Multiplication by 30
To multiply a number by 30 we multiply the given number by 3 and put one zero to the right of product.
1 × 30 = 30
2 × 30 = 60
3 × 30 = 90
4 × 30 = 120
5 × 30 = 150
6 × 30 = 180
7 × 30 = 210
8 × 30 = 240
9 × 30 = 270
Multiplication by 40
To multiply a number by 40 we multiply the given number by 4 and put one zero to the right of product.
1 × 40 = 40
2 × 40 = 80
3 × 40 = 120
4 × 40 = 160
5 × 40 = 200
6 × 40 = 240
7 × 40 = 280
8 × 40 = 320
9 × 40 = 360
Multiplication by 50
To multiply a number by 50 we multiply the given number by 5 and put one zero to the right of product.
1 × 50 = 50
2 × 50 = 100
3 × 50 = 150
4 × 50 = 200
5 × 50 = 250
6 × 50 = 300
7 × 50 = 350
8 × 50 = 400
9 × 50 = 450
Multiplication by 60
To multiply a number by 60 we multiply the given number by 6 and put one zero to the right of product.
1 × 60 = 60
2 × 60 = 120
3 × 60 = 180
4 × 60 = 240
5 × 60 = 300
6 × 60 = 360
7 × 60 = 420
8 × 60 = 480
9 × 60 = 540
Multiplication by 70
To multiply a number by 70 we multiply the given number by 7 and put one zero to the right of product.
1 × 70 = 70
2 × 70 = 140
3 × 70 = 210
4 × 70 = 280
5 × 70 = 350
6 × 70 = 420
7 × 70 = 490
8 × 70 = 560
9 × 70 = 630
Multiplication by 80
To multiply a number by 80 we multiply the given number by 8 and put one zero to the right of product.
1 × 80 = 80
2 × 80 = 160
3 × 80 = 240
4 × 80 = 320
5 × 80 = 400
6 × 80 = 480
7 × 80 = 560
8 × 80 = 640
9 × 80 = 720
Multiplication by 90
To multiply a number by 90 we multiply the given number by 9 and put one zero to the right of product.
1 × 90 = 90
2 × 90 = 180
3 × 90 = 270
4 × 90 = 360
5 × 90 = 450
6 × 90 = 540
7 × 90 = 630
8 × 90 = 720
9 × 90 = 810
Questions and Answers on Multiplication by 10, 20, 30, 40, 50, 60, 70, 80, 90:
I. Find the product:
(i) 32 × 20 = ……….
(ii) 26 × 10 = ……….
(iii) 24 × 30 = ……….
(iv) 25 × 20 = ……….
(v) 9 × 70 = ……….
(vi) 4 × 80 = ……….
(vii) 22 × 10 = ……….
(viii) 18 × 40 = ……….
(ix) 8 × 90 = ……….
Answer:
I. (i) 640
(ii) 20
(iii) 720
(iv) 500
(v) 630
(vi) 320
(vii) 220
(viii) 720
(ix) 720
II. Fill in the blanks:
(i) 7 × …….. = 140
(ii) 30 × 5 = ……..
(iii) 50 × …….. = 500
(iv) …….. × 25 = 250
(v) 22 × 30 = ……..
(vi) 20 × 80 = ……..
(vii) 10 × …….. = 820
(viii) 5 × 80 = ……..
(ix) …….. × 10 = 620
Answer:
II. (i) 20
(ii) 150
(iii) 10
(iv) 10
(v) 660
(vi) 1600
(vii) 82
(viii) 400
(ix) 62
You might like these
We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the
In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, properties of subtraction, estimating the difference and word problems on 3-digit
We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add
Solved examples on Word problems on addition and subtraction . 1. In a school there are 2,392 boys and 2,184 girls. Find the total number of students in the school. Solution: Number of boys in the school = 2392 Number of girls in the school = + 2184 Total students in the
We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.
We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.
We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 2520 males and 1840 females.
Subtraction of 3-digit numbers without regrouping are explained here with examples. 1. Ron has a ream of paper having 140 sheets in it. He has used 40 sheets for his project report. How many sheets are left in the ream? To find out the number of sheets left, we will perform
The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction with small numbers can be worked out horizontally. Example: 8 – 5 = 3 24 – 4 =
We will learn Addition of 3-Digit Numbers without Regrouping. We know how to do addition of 3-digit numbers without regrouping. Let us recall it solving some examples. Solved Examples on Addition of 3-Digit Numbers without Regrouping 1. The shopkeeper has 153 packets
The operation to find the total of different values is called addition. Let us know some facts about addition which will help us to learn to add 4-digit and 5-digit numbers. 1. Addition of small numbers can be done horizontally. Example: 6 + 2 + 3 = 11
In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping, addition of Three 3-digit numbers with regrouping, properties of addition
3rd grade number worksheet will help the kids to practice the questions on numbers. Fill in the blanks: Write in words: Write in numerals: Write > or =, < between the given numbers:
We can make numbers from the given digits. Let us see the rules. Rule I. To get the smallest number, arrange the digits in ascending order from left to right. Rule II. To get the greatest number, arrange the digits in descending order from left to right. Example: Write the
What are the rules for the comparison of four-digit numbers? We have already learnt that a two-digit number is always greater than a single digit number.
3rd Grade Math Lessons
From Multiplication by 10, 20, 30, 40, 50, 60, 70, 80, 90 to HOME PAGE
Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.
Share this page:
What’s this?
|
|
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.