Irrational Roots of a Quadratic Equation

We will discuss about the irrational roots of a quadratic equation.

In a quadratic equation with rational coefficients has a irrational or surd root α + √β, where α and β are rational and β is not a perfect square, then it has also a conjugate root α - √β.

Proof:

To prove the above theorem let us consider the quadratic equation of the general form:

ax\(^{2}\) + bx + c = 0 where, the coefficients a, b and c are real.

Let p + √q (where p is rational and √q is irrational) be a surd root of equation ax\(^{2}\) + bx + c = 0. Then the equation ax\(^{2}\) + bx + c = 0 must be satisfied by x = p + √q.

Therefore,

a(p + √q)\(^{2}\) + b(p + √q) + c = 0

⇒ a(p\(^{2}\) + q + 2p√q) + bp + b√q + c = 0

⇒ ap\(^{2}\) - aq + 2ap√q + bp + b√q + c = 0

⇒ ap\(^{2}\) - aq + bp + c + (2ap + b)√q = 0

⇒ ap\(^{2}\) - aq + bp + c + (2ap + b)√q = 0 + 0 √q

Therefore,

ap\(^{2}\) - aq + bp + c = 0 and 2ap + b = 0

Now substitute x by p - √q in ax\(^{2}\) + bx + c we get,

a(p - √q)\(^{2}\) + b(p - √q) + c

= a(p\(^{2}\) + q - 2p√q) + bp - p√q + c

= ap\(^{2}\) + aq - 2ap√q + bp - b√q + c

= ap\(^{2}\) + aq + bp + c - (2ap + b)√q

= 0 - √q 0 [Since, ap\(^{2}\) - aq + bp + c = 0 and 2ap + b = 0]

= 0

Now we clearly see that the equation ax\(^{2}\) + bx + c = 0 is satisfied by x = (p - √q) when (p + √q) is a surd root of the equation ax\(^{2}\) + bx + c = 0. Therefore, (p - √q) is the other surd root of the equation ax\(^{2}\) + bx + c = 0.

Similarly, if (p - √q) is a surd root of equation ax\(^{2}\) + bx + c = 0 then we can easily proved that its other surd root is (p + √q).

Thus, (p + √q) and (p - √q) are conjugate surd roots. Therefore, in a quadratic equation surd or irrational roots occur in conjugate pairs.


Solved example to find the irrational roots occur in conjugate pairs of a quadratic equation:

Find the quadratic equation with rational coefficients which has 2 + √3 as a root.

Solution:

According to the problem, coefficients of the required quadratic equation are rational and its one root is 2 + √3. Hence, the other root of the required equation is 2 - √3 (Since, the surd roots always occur in pairs, so other root is 2 - √3.

Now, the sum of the roots of the required equation = 2 + √3 + 2 - √3 = 4

And, product of the roots = (2 + √3)( 2 - √3) = 2\(^{2}\) - (√3)\(^{2}\) = 4 - 3 = 1

Hence, the equation is

x\(^{2}\) - (Sum of the roots)x + product of the roots = 0

i.e., x\(^{2}\) - 4x + 1 = 0

Therefore, the required equation is x\(^{2}\) - 4x + 1 = 0.





11 and 12 Grade Math 

From Irrational Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 06:35 PM

    Shifting of Digits in a Number
    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More