Important Properties of Transverse Common Tangents

I. The two transverse common tangents drawn to two circles are equal in length.

Given:

WX and YZ are two transverse common tangents drawn to the two given circles with centres O and P. WX and YZ intersect at T.

Equal Transverse Common Tangents

To prove: WX = YZ.

Proof:

Statement

Reason

1. WT = YT.

1. The two tangents, drawn to a circle from an external point, are equal in length.

2. XT = ZT.

2. An in statement 1.

3. WT + XT = YT + ZT

⟹ WX = YZ. (Proved)

3. Adding statements 1 and 2.

Length of a Transverse Common Tangent


II. The length of a transverse common tangent to two circles is \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\), where d is the distance between the centres of the circles, and r\(_{1}\) and r\(_{2}\) are the radii of the given circles.

Proof:

Let two circles be given with centres O and P, and radii r\(_{1}\) and r\(_{2}\) respectively, where r\(_{1}\) < r\(_{2}\). Let the distance between the centres of the circles, OP = d.

Let WX be a transverse common tangent.

Therefore, OW = r\(_{1}\) and PX = r\(_{2}\).

Also, OW ⊥ WX and PX ⊥ WX, because a tangent is perpendicular to the radius drawn through the point of contact

Produce W to T such that WT = PX = r\(_{2}\). Join T to P. In the quadrilateral WXPT, WT ∥ PX, as both are perpendiculars to WX; and WT = PX. Therefore, WXPT is a rectangle. Thus, WX = PT, as the opposite sides of a rectangle are equal.

OT = OW + WT = r\(_{1}\)  +  r\(_{2}\).

In the right-angled triangle OPT, we have

PT2 = OP2 – OT2 (by Pythagoras’ Theorem)

⟹ PT2 = d2 – (r\(_{1}\) + r\(_{1}\))\(^{2}\)

⟹ PT = \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\)

⟹ WX = \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\) (Since, PT = WX).


III. The transverse common tangents drawn to two circles intersect on the line drawn through the centres of the circles.

Given: Two circles with centres O and P, and their transverse common tangents WX and YZ, which intersects at T

Properties of Transverse Common Tangents

To prove: T lies on the line joining O to P, i.e., O T and P lie on the same straight line.

Proof:

Statement

Reason

1. OT bisects ∠WTY

⟹ ∠ATO = \(\frac{1}{2}\)∠WTY.

1. The tangents drawn to a circle from an external point are equally inclined to the line joining the point to the centre of the circle.

2. TP bisects ∠ZTX

⟹ ∠XTP = \(\frac{1}{2}\)∠ZTX.

2.  As in statement 1.

3. ∠WTY = ∠ZTX.

3. Vertically opposite angles.

4. ∠WTO = ∠XTP.

4. From statement 1, 2 and 3.

5. OT and TP lie on the same straight line

⟹ O, T, P are collinear. (Prove)

5. The two angles are forming a pair of vertically opposite angles.




10th Grade Math

From Important Properties of Transverse Common Tangents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 8 Times Table | Printable Multiplication Table | Video

    Mar 18, 25 03:30 PM

    worksheet on multiplication of 8 times table
    Worksheet on 8 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Mar 18, 25 02:47 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  3. Conversion of Roman Numeration | Roman Numerals |Hindu Arabic Numerals

    Mar 18, 25 02:12 PM

    We will learn the conversion of Roman numeration. First we will learn how to convert numbers in roman numerals. 1. Convert 579 in roman numerals.

    Read More

  4. Rules of Roman Numeration |Roman Number System|Roman Numeration System

    Mar 18, 25 09:41 AM

    Rules of Roman Numerals
    We will learn about Roman Numeration and its rules. We know that there are seven basic Roman Numerals. They are I, V, X, L, C, D and M. These numerals stand for the number 1, 5, 10, 50, 100, 500

    Read More

  5. Divisible by 2 | Test of Divisibility by 2 |Rules of Divisibility by 2

    Mar 17, 25 04:04 PM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More