Important Properties of Transverse Common Tangents

I. The two transverse common tangents drawn to two circles are equal in length.

Given:

WX and YZ are two transverse common tangents drawn to the two given circles with centres O and P. WX and YZ intersect at T.

Equal Transverse Common Tangents

To prove: WX = YZ.

Proof:

Statement

Reason

1. WT = YT.

1. The two tangents, drawn to a circle from an external point, are equal in length.

2. XT = ZT.

2. An in statement 1.

3. WT + XT = YT + ZT

⟹ WX = YZ. (Proved)

3. Adding statements 1 and 2.

Length of a Transverse Common Tangent


II. The length of a transverse common tangent to two circles is \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\), where d is the distance between the centres of the circles, and r\(_{1}\) and r\(_{2}\) are the radii of the given circles.

Proof:

Let two circles be given with centres O and P, and radii r\(_{1}\) and r\(_{2}\) respectively, where r\(_{1}\) < r\(_{2}\). Let the distance between the centres of the circles, OP = d.

Let WX be a transverse common tangent.

Therefore, OW = r\(_{1}\) and PX = r\(_{2}\).

Also, OW ⊥ WX and PX ⊥ WX, because a tangent is perpendicular to the radius drawn through the point of contact

Produce W to T such that WT = PX = r\(_{2}\). Join T to P. In the quadrilateral WXPT, WT ∥ PX, as both are perpendiculars to WX; and WT = PX. Therefore, WXPT is a rectangle. Thus, WX = PT, as the opposite sides of a rectangle are equal.

OT = OW + WT = r\(_{1}\)  +  r\(_{2}\).

In the right-angled triangle OPT, we have

PT2 = OP2 – OT2 (by Pythagoras’ Theorem)

⟹ PT2 = d2 – (r\(_{1}\) + r\(_{1}\))\(^{2}\)

⟹ PT = \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\)

⟹ WX = \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\) (Since, PT = WX).


III. The transverse common tangents drawn to two circles intersect on the line drawn through the centres of the circles.

Given: Two circles with centres O and P, and their transverse common tangents WX and YZ, which intersects at T

Properties of Transverse Common Tangents

To prove: T lies on the line joining O to P, i.e., O T and P lie on the same straight line.

Proof:

Statement

Reason

1. OT bisects ∠WTY

⟹ ∠ATO = \(\frac{1}{2}\)∠WTY.

1. The tangents drawn to a circle from an external point are equally inclined to the line joining the point to the centre of the circle.

2. TP bisects ∠ZTX

⟹ ∠XTP = \(\frac{1}{2}\)∠ZTX.

2.  As in statement 1.

3. ∠WTY = ∠ZTX.

3. Vertically opposite angles.

4. ∠WTO = ∠XTP.

4. From statement 1, 2 and 3.

5. OT and TP lie on the same straight line

⟹ O, T, P are collinear. (Prove)

5. The two angles are forming a pair of vertically opposite angles.




10th Grade Math

From Important Properties of Transverse Common Tangents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 10, 24 02:35 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More