Find the Area of the Shaded Region

Here we will learn how to find the area of the shaded region.

To find the area of the shaded region of a combined geometrical shape, subtract the area of the smaller geometrical shape from the area of the larger geometrical shape.

1. A regular hexagon is inscribed in a circle of radius 14 cm. Find the area of the circle falling outside the hexagon.

Solution:

The given combined shape is combination of a circle and a regular hexagon.

Required area = Area of the circle – Area of the regular hexagon.

To find the area of the shaded region of the given combined geometrical shape, subtract the area of the regular hexagon (smaller geometrical shape) from the area of the circle (larger geometrical shape).

Area of the circle = πr2

                         = \(\frac{22}{7}\) × 142 cm2.

                         = 616 cm2.

Area of the regular hexagon = 6 × area of the equilateral ∆OPQ

                                         = 6 × \(\frac{√3}{4}\)  × OP2

                                         = \(\frac{3√3}{2}\) × 142 cm2.

                                         = 294√3 cm2.

                                         = 509.21 cm2.

Alternate method

Required area = 6 × area of the segment PQM

                     = 6{Area of the sector OPMQ – Area of the equilateral ∆OPQ

                     = 6{\(\frac{60°}{360°}\) × πr2 - \(\frac{√3}{4}\)r2}

                     = 6{\(\frac{1}{6}\) ∙ \(\frac{22}{7}\) ∙ 142 - \(\frac{√3}{4}\) × 142} cm2.

                     = (22 × 2 × 14 - 3√3 × 14 × 7) cm2.

                     = (616 - 294 × 1.732) cm2.

                     = (616 - 509.21) cm2.

                     = 106.79 cm2.

 

2. Three equal circles, each of radius 7 cm, touch each other, as shown. Find the shaded area between the three circles. Also, find the perimeter of the shaded region.

Solution:

The triangle PQR is equilateral, each of whose sides is of length = 7 cm + 7 cm, i.e., 14 cm. So, each of the angles SPU, TRU, SQT has the measure 60°.

Area of the ∆PQR = \(\frac{√3}{4}\) × (Side)2

                          = \(\frac{√3}{4}\) × 142 cm2.

Area of each of the three sectors = \(\frac{60°}{360°}\) × πr2

                                                = \(\frac{1}{6}\) ∙ \(\frac{22}{7}\) ∙ 72 cm2.

Now, the shaded area = Area of the triangle ∆PQR - Area of the sector ∆SPU - Area of the sector ∆TRU - Area of the sector ∆SQT

                                 = \(\frac{√3}{4}\) × 142 cm2 – 3 × (\(\frac{1}{6}\) × \(\frac{22}{7}\) × 72) cm2.

                                 = (49√3 – 77) cm2.

                                 = (49 × 1.732 – 77) cm2.

                                 = 7.87 cm2.

Next, perimeter of the shaded region

                                = Sum of arcs SU, TU and TS, which are equal.

                                 = 3 × arc SU

                                 = 3 × \(\frac{60°}{360°}\) × 2πr

                                 = 3 × \(\frac{1}{6}\) × 2 × \(\frac{22}{7}\) × 7 cm

                                 = 22 cm.





10th Grade Math

From Find the Area of the Shaded Region to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More