Find the Area of the Shaded Region

Here we will learn how to find the area of the shaded region.

To find the area of the shaded region of a combined geometrical shape, subtract the area of the smaller geometrical shape from the area of the larger geometrical shape.

1. A regular hexagon is inscribed in a circle of radius 14 cm. Find the area of the circle falling outside the hexagon.

Solution:

The given combined shape is combination of a circle and a regular hexagon.

Required area = Area of the circle – Area of the regular hexagon.

To find the area of the shaded region of the given combined geometrical shape, subtract the area of the regular hexagon (smaller geometrical shape) from the area of the circle (larger geometrical shape).

Area of the circle = πr2

                         = \(\frac{22}{7}\) × 142 cm2.

                         = 616 cm2.

Area of the regular hexagon = 6 × area of the equilateral ∆OPQ

                                         = 6 × \(\frac{√3}{4}\)  × OP2

                                         = \(\frac{3√3}{2}\) × 142 cm2.

                                         = 294√3 cm2.

                                         = 509.21 cm2.

Alternate method

Required area = 6 × area of the segment PQM

                     = 6{Area of the sector OPMQ – Area of the equilateral ∆OPQ

                     = 6{\(\frac{60°}{360°}\) × πr2 - \(\frac{√3}{4}\)r2}

                     = 6{\(\frac{1}{6}\) ∙ \(\frac{22}{7}\) ∙ 142 - \(\frac{√3}{4}\) × 142} cm2.

                     = (22 × 2 × 14 - 3√3 × 14 × 7) cm2.

                     = (616 - 294 × 1.732) cm2.

                     = (616 - 509.21) cm2.

                     = 106.79 cm2.

 

2. Three equal circles, each of radius 7 cm, touch each other, as shown. Find the shaded area between the three circles. Also, find the perimeter of the shaded region.

Solution:

The triangle PQR is equilateral, each of whose sides is of length = 7 cm + 7 cm, i.e., 14 cm. So, each of the angles SPU, TRU, SQT has the measure 60°.

Area of the ∆PQR = \(\frac{√3}{4}\) × (Side)2

                          = \(\frac{√3}{4}\) × 142 cm2.

Area of each of the three sectors = \(\frac{60°}{360°}\) × πr2

                                                = \(\frac{1}{6}\) ∙ \(\frac{22}{7}\) ∙ 72 cm2.

Now, the shaded area = Area of the triangle ∆PQR - Area of the sector ∆SPU - Area of the sector ∆TRU - Area of the sector ∆SQT

                                 = \(\frac{√3}{4}\) × 142 cm2 – 3 × (\(\frac{1}{6}\) × \(\frac{22}{7}\) × 72) cm2.

                                 = (49√3 – 77) cm2.

                                 = (49 × 1.732 – 77) cm2.

                                 = 7.87 cm2.

Next, perimeter of the shaded region

                                = Sum of arcs SU, TU and TS, which are equal.

                                 = 3 × arc SU

                                 = 3 × \(\frac{60°}{360°}\) × 2πr

                                 = 3 × \(\frac{1}{6}\) × 2 × \(\frac{22}{7}\) × 7 cm

                                 = 22 cm.





10th Grade Math

From Find the Area of the Shaded Region to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More