Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Expansion of (a ± b)2

A binomial is an algebraic expression which has exactly two terms, for example, a ± b. Its power is indicated by a superscript. For example, (a ± b)2 is a power of the binomial a ± b, the index being 2.

A trinomial is an algebraic expression which has exactly three terms, for example, a ± b ± c. Its power is also indicated by a superscript. For example, (a ± b ± c)3 is a power of the trinomial a ± b ± c, whose index is 3.

Expansion of (a ± b)2

(a +b)2

= (a + b)(a + b)

= a(a + b) + b(a+ b)

= a2 + ab + ab + b2

= a2 + 2ab + b2.


(a - b)2

= (a - b)(a - b)

= a(a - b) - b(a - b)

= a2 - ab - ab + b2

= a2 - 2ab + b2.


Therefore, (a + b)2 + (a - b)2

= a2 + 2ab + b2 + a2 - 2ab + b2

= 2(a2 + b2), and


(a + b)2 - (a - b)2

= a2 + 2ab + b2 - {a2 - 2ab + b2}

= a2 + 2ab + b2 - a2 + 2ab - b2

= 4ab.


Corollaries: 

(i) (a + b)2 - 2ab = a2 + b2

(ii) (a - b)2 + 2ab = a2 + b2

(iii) (a + b)2 - (a2 + b2) = 2ab

(iv) a2 + b2 - (a - b)2 = 2ab

(v) (a - b)2 = (a + b)2 - 4ab

(vi) (a + b)2 = (a - b)2 + 4ab

(vii) (a + 1a)2 = a2 + 2a ∙ 1a + (1a)2 = a2 + 1a2 + 2

(viii) (a - 1a)2 = a2 - 2a ∙ 1a + (1a)2 = a2 + 1a2 - 2


Thus, we have

1. (a +b)2 = a2 + 2ab + b2.

2. (a - b)2 = a2 - 2ab + b2.

3. (a + b)2 + (a - b)2  = 2(a2 + b2)

4. (a + b)2 - (a - b)2 = 4ab.

5. (a + 1a)2 = a2 + 1a2 + 2

6. (a - 1a)2 = a2 + 1a2 - 2


Solved Example on Expansion of (a ± b)2

1. Expand (2a + 5b)2.

Solution:

   (2a + 5b)2

= (2a)2 + 2 ∙ 2a ∙ 5b + (5b)2

= 4a2 + 20ab + 25b2


2. Expand (3m - n)2

Solution:

    (3m - n)2

= (3m)2 - 2 ∙ 3m ∙ n + n2

= 9m2 - 6mn + n2


3. Expand (2p + 12p)2

Solution:

    (2p + 12p)2

= (2p)2 + 2 ∙ 2p ∙ 12p + (12p)2

= 4p2 + 2 + 14p2


4. Expand (a - 13a)2

Solution:

     (a - 13a)2

= a2 - 2 ∙ a ∙ 13a + (13a)2

= a2 - 2319a2.


5. If a + 1a = 3, find (i) a2 + 1a2 and (ii) a4 + 1a4

Solution:

We know, x2 + y2 = (x + y)2 – 2xy.

Therefore, a2 + 1a2

= (a + 1a)2 – 2 ∙ a ∙ 1a

= 32 – 2

= 9 – 2

= 7.

 

Again, Therefore, a4 + 1a4

= (a2 + 1a2)2 – 2 ∙ a21a2

= 72 – 2

= 49 – 2

= 47.

 

6. If a - 1a = 2, find a2 + 1a2

Solution:

We know, x2 + y2 = (x - y)2 + 2xy.

Therefore, a2 + 1a2

= (a - 1a)2 + 2 ∙ a ∙ 1a

= 22 + 2

= 4 + 2

= 6.


7. Find ab if a + b = 6 and a – b = 4.

Solution:

We know, 4ab = (a + b)2 – (a – b)2

= 62 – 42

= 36 – 16

= 20

Therefore, 4ab = 20

So, ab = 204 = 5.


8. Simplify: (7m + 4n)2 + (7m - 4n)2

Solution:

(7m + 4n)2 + (7m - 4n)2

= 2{(7m)2 + (4n)2}, [Since (a + b)2 + (a – b)2 = 2(a2 + b2)]

= 2(49m2+ 16n2)

= 98m2 + 32n2.


9. Simplify: (3u + 5v)2 - (3u - 5v)2

Solution:

(3u + 5v)2 - (3u - 5v)2

= 4(3u)(5v), [Since (a + b)2 - (a – b)2 = 4ab]

= 60uv.





9th Grade Math

From Expansion of (a ± b)^2 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.