Subscribe to our YouTube channel for the latest videos, updates, and tips.
We will discuss here about the expansion of (a ± b)\(^{3}\).
(a + b)\(^{3}\) = (a + b) ∙ (a + b)\(^{2}\)
= (a + b)(a\(^{2}\) + 2ab + b\(^{2}\))
= a(a\(^{2}\) + 2ab + b\(^{2}\)) + b(a\(^{2}\) + 2ab + b\(^{2}\))
= a\(^{3}\) + 2a\(^{2}\)b + ab\(^{2}\) + ba\(^{2}\) + 2ab\(^{2}\) + b\(^{3}\)
= a\(^{3}\) + 3a\(^{2}\)b + 3ab\(^{2}\) + b\(^{3}\).
(a - b)\(^{3}\) = (a - b) ∙ (a - b)\(^{2}\)
= (a - b)(a\(^{2}\) - 2ab + b\(^{2}\))
= a(a\(^{2}\) - 2ab + b\(^{2}\)) - b(a\(^{2}\) - 2ab + b\(^{2}\))
= a\(^{3}\) - 2a\(^{2}\)b + ab\(^{2}\) - ba\(^{2}\) + 2ab\(^{2}\) - b\(^{3}\)
= a\(^{3}\) - 3a\(^{2}\)b + 3ab\(^{2}\) - b\(^{3}\).
Corollaries:
(a + b)\(^{3}\) = a\(^{3}\) + 3ab(a + b) + b\(^{3}\) = a\(^{3}\) + b\(^{3}\) + 3ab(a + b)
(a - b)\(^{3}\) = a\(^{3}\) – 3ab(a - b) - b\(^{3}\) = a\(^{3}\) - b\(^{3}\) - 3ab(a - b)
(a + b)\(^{3}\) – (a\(^{3}\) + b\(^{3}\)) = 3ab(a + b)
(a - b)\(^{3}\) – (a\(^{3}\) - b\(^{3}\)) = 3ab(a - b)
a\(^{3}\) + b\(^{3}\) = (a + b)\(^{3}\) - 3ab(a + b)
a\(^{3}\) - b\(^{3}\) = (a - b)\(^{3}\) + 3ab(a - b)
From Expansion of (a ± b)\(^{3}\) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jun 12, 25 12:48 PM
Jun 11, 25 04:26 PM
Jun 11, 25 03:12 PM
Jun 11, 25 03:13 AM
Jun 10, 25 05:36 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.