Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Expansion of (a ± b ± c)2

We will discuss here about the expansion of (a ± b ± c)2.

(a + b + c)2 = {a + (b + c)}2 = a2 + 2a(b + c) + (b + c)2

= a2 + 2ab + 2ac + b2 + 2bc + c2

= a2 + b2 + c2 + 2(ab + bc + ca)

= sum of squares of a, b, c + 2(sum of the products of a, b, c taking two at a time}.

Therefore, (a – b + c)2 = a2 + b2 + c2 + 2(ac – ab – bc)

Similarly for (a – b – c)2, etc.

Corollaries:

(i) a2 + b2 + c2 = (a + b + c)2 – 2(ab + bc + ca)

(ii) ab + bc + ca = 12{(a + b + c)2 – (a2 + b2 + c2)}


Solved Examples on Expansion of (a ± b ± c)2

1. Expand (2x + y +3z)^2

Solution:

(2x + y +3z)2

= (2x)2 + y2 + (3z)2 + 2{2x ∙ y + y ∙ 3z + 3z ∙ 2x}

= 4x2 + y2 + 9z2 + 4xy + 6yz + 12zx.

 

2. Expand (a - b - c)2

Solution:

(a - b - c)2

= a2 + (-b)2 + (-c)2 + 2{a ∙ (-b) + (-b) ∙ (-c) + (-c) ∙ a}

= a2 + b2 + c2 - 2ab + 2bc - 2ca.

 

3. Expand (m - 12x + m2)2

Solution:

(m - 12x + m2)2

m2 + (-12m)2 + (m2)2 + 2{m ∙ (-12m) + (-12m) ∙ m2  + m2  ∙ m}

= m2 + 14m2+ m4 + 2{-12 - 12m + m3}

= m2 + 14m2+ m4 - 1 - m + 2m3.


4. If p + q + r = 8 and pq + qr + rp = 18, find the value of p2 + q2 + r2.

Solution:

We know that p2 + q2 + r2 = (p + q + r)2 - 2(pq + qr + rp).

Therefore, p2 + q2 + r2

= 82 - 2 × 18

= 64 – 36

= 28.


5. If x – y – z = 5 and x2 + y2 + z2 = 29, find the value of xy – yz – zx.

Solution:

We know that ab + bc + ca = 12[(a + b + c)2 – (a2 + b2 + c2)].

Therefore, xy + y(-z) + (-z)x = 12[(x + y - z)2 – (x2 + y2 + (-z)2)]

Or, xy – yz – zx = 12[52 – (x2 + y2 + z2)]

                        = 12[25 – 29]

                        = 12(-4)

                        = -2.










9th Grade Math

From Expansion of (a ± b ± c)^2 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.