Area of the Shaded Region

We will learn how to find the Area of the shaded region of combined figures.

To find the area of the shaded region of a combined geometrical shape, subtract the area of the smaller geometrical shape from the area of the larger geometrical shape.

Solved Examples on Area of the Shaded Region:

1. In the adjoining figure, PQR is a right-angled triangle in which ∠PQR = 90°, PQ = 6 cm and QR = 8 cm. O is the centre of the incircle.

Area of the Shaded Region

Find the area of the shaded regions. (Use π = \(\frac{22}{7}\))

Solution:

The given combined shape is combination of a triangle and incircle.

To find the area of the shaded region of the given combined geometrical shape, subtract the area of the incircle (smaller geometrical shape) from the area of the ∆PQR (larger geometrical shape).

Required area = area of the ∆PQR – Area of the incircle.

Now, area of the ∆PQR = \(\frac{1}{2}\) × 6 cm × 8 cm = 24 cm2.

Let the radius of the incircle be r cm.

Clearly, QR = \(\sqrt{PQ^{2} + QR^{2}}\)

                 = \(\sqrt{6^{2} + 8^{2}}\) cm

                 = \(\sqrt{36 + 64}\) cm

                 = \(\sqrt{100}\) cm

                 = 10 cm

Therefore,

Area of ∆OPR = \(\frac{1}{2}\) × r × PR

                    = \(\frac{1}{2}\) × r × 10 cm2.


Area of ∆ORQ = \(\frac{1}{2}\) × r × QR

                    = \(\frac{1}{2}\) × r × 8 cm2.


Area of ∆OPQ = \(\frac{1}{2}\) × r × PQ

                     = \(\frac{1}{2}\) × r × 6 cm2.


Adding these, area of the ∆PQR = \(\frac{1}{2}\) × r × (10 + 8 + 6) cm2.

                                              = 12r cm2.

Therefore, 24 cm2 = 12r cm2.

⟹ r = \(\frac{24}{12}\)

⟹ r = 2

Therefore, the radius of the incircle = 2 cm.

So, the area of the incircle = πr2

                                       = \(\frac{22}{7}\) × 22 cm2.

                                       = \(\frac{22}{7}\) × 4 cm2.

                                       = \(\frac{88}{7}\) cm2.

 

Therefore, the required area = Area of the ∆PQR – Area of the incircle.

                                          = 24 cm2 - \(\frac{88}{7}\) cm2.

                                          = \(\frac{80}{7}\) cm2.

                                          = 11\(\frac{3}{7}\) cm2.

 

2. In the adjoining figure, PQR is an equailateral triangle of side 14 cm. T is the centre of the circumcircle.

Find the area of the shaded regions. (Use π = \(\frac{22}{7}\))

Solution:

The given combined shape is combination of a circle and an equilateral triangle.

To find the area of the shaded region of the given combined geometrical shape, subtract the area of the equilateral triangle PQR (smaller geometrical shape) from the area of the circle (larger geometrical shape).

The required area = Area of the circle – The area of the equilateral triangle PQR.

Let PS ⊥ QR.

In the equilateral triangle SR = \(\frac{1}{2}\) QR

                                          = \(\frac{1}{2}\) × 14 cm

                                          = 7 cm

Therefore, PS = \(\sqrt{14^{2} – 7^{2}}\) cm

                    = \(\sqrt{147}\) cm

Also, in an equilateral triangle, the circumcentre T coincides with the centroid.

So, PT = \(\frac{2}{3}\)PS

          = \(\frac{2}{3}\)\(\sqrt{147}\) cm

Therefore, the circumradius = PT = \(\frac{2}{3}\)\(\sqrt{147}\) cm

Therefore, area of the circle = πr2

                                         = \(\frac{22}{7}\) × \((\frac{2}{3}\sqrt{147})^{2}\) cm2.

                                         = \(\frac{22}{7}\) × \(\frac{4}{9}\) × 147 cm2.

                                         = \(\frac{616}{3}\) cm2.

And area of the equilateral triangle PQR = \(\frac{√3}{4}\) PR2

                                                          = \(\frac{√3}{4}\) × 142 cm2.

                                                          = \(\frac{√3}{4}\) × 196 cm2.

                                                          = 49√3 cm2.

Therefore, the required area = Area of the circle – The area of the equilateral triangle PQR.

                                          = \(\frac{616}{3}\) cm2 -  49√3 cm2.

                                          = 205.33 – 49 × 1.723 cm2.

                                          = 205.33 – 84.868 cm2.

                                          = 120.462 cm2.

                                          = 120.46 cm2. (Approx).







10th Grade Math

From Area of the Shaded Region to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Worksheet on Basic Multiplication Facts | Repeated Addition Fact

    Jan 15, 25 12:40 PM

    Worksheet on Basic Multiplication Facts
    Practice some known facts given in the worksheet on basic multiplication facts. The questions are based on the multiplication fact and repeated addition fact. 1. Write the multiplication fact for each

    Read More

  3. Worksheet on Facts about Multiplication | Multiplication Sum | Answers

    Jan 15, 25 01:24 AM

    Facts about Multiplication Work
    Practice the worksheet on facts about multiplication. We know in multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the mul…

    Read More

  4. Facts about Multiplication | Multiplicand | Multiplier | Product

    Jan 15, 25 01:03 AM

    We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the m…

    Read More

  5. Basic Multiplication Facts | Repeated Addition |Multiplication Process

    Jan 15, 25 12:23 AM

    Understanding Multiplication
    Some basic multiplication facts are needed to follow for multiplying numbers. The repeated addition of the same number is expressed by multiplication in short.

    Read More