Area of Combined Figures

A combined figure is a geometrical shape that is the combination of many simple geometrical shapes. 


To find the area of combined figures we will follow the steps:

Step I: First we divide the combined figure into its simple geometrical shapes. 

Step II: Then calculate the area of these simple geometrical shapes separately, 

Step III: Finally, to find the required area of the combined figure we need to add or subtract these areas.

Solved Examples on Area of combined figures:

1. Find the area of the shaded region of the adjoining figure. (Use π = \(\frac{22}{7}\))

Area of Combined Figures

JKLM is a square of side 7 cm. O is the centre of the semicircle MNL.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and a semicircle.

Step II: Then calculate the area of these simple geometrical shapes separately.

Area of the square JKLM = 72 cm2

                                    = 49 cm2

Area of the semicircle LNM = \(\frac{1}{2}\) π ∙ \((\frac{7}{2})^{2}\) cm2 , [Since, diameter LM = 7 cm]

                                       = \(\frac{1}{2}\)  ∙  \(\frac{22}{7}\) ∙ \(\frac{49}{4}\) cm2

                                       = \(\frac{77}{4}\) cm2

                                       = 19.25 cm2

Step III: Finally, add these areas up to get the total area of the combined figure.

Therefore, the required area = 49 cm2 + 19.25 cm2

                                          = 68.25 cm2.


2. In the adjoining figure, PQRS is a square of side 14 cm and O is the centre of the circle touching all sides of the square. 

Area of a Composite Figure

Find the area of the shaded region.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and a circle.

Step II: Then calculate the area of these simple geometrical shapes separately.

Area of the square PQRS = 142 cm2

                                    = 196 cm2

Area of the circle with centre O = π ∙ 72 cm2, [Since, diameter SR = 14 cm]

                                             = \(\frac{22}{7}\) ∙ 49 cm2

                                             = 22 × 7 cm2

                                             = 154 cm2

Step III: Finally, to find the required area of the combined figure we need to subtract the area of the circle from the area of the square.

 

Therefore, the required area = 196 cm2 - 154 cm2

                                          = 42 cm2


3. In the adjoining figure alongside, there are four equal quadrants of circles each of radius 3.5 cm, their centres being P, Q, R and S. 

Area of Compound Shapes

Find the area of the shaded region.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and four quadrants.

Step II:Then calculate the area of these simple geometrical shapes separately.

Area of the square PQRS = 72 cm2, [Since, side of the square = 7 cm]

                                                = 49 cm2

Area of the quadrant APB = \(\frac{1}{4}\) π ∙ r2 cm2

                                = \(\frac{1}{4}\) ∙ \(\frac{22}{7}\)  ∙  \((\frac{7}{2})^{2}\) cm2, [Since, side of the square = 7 cm and radius of the quadrant = \(\frac{7}{2}\) cm]

                                = \(\frac{77}{8}\) cm2

There are four quadrants and they have the same area.

So, total area of the four quadrants = 4 × \(\frac{77}{8}\) cm2

                                                    = \(\frac{77}{2}\) cm2

                                                    = \(\frac{77}{2}\) cm2

Step III: Finally, to find the required area of the combined figure we need to subtract the area of the four quadrants from the area of the square.

Therefore, the required area = 49 cm2 - \(\frac{77}{2}\) cm2

                                          = \(\frac{21}{2}\) cm2

                                          = 10.5 cm2




10th Grade Math

From Areas of Combined Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  2. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 14, 24 02:12 PM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  5. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More