Area of Combined Figures

A combined figure is a geometrical shape that is the combination of many simple geometrical shapes. 


To find the area of combined figures we will follow the steps:

Step I: First we divide the combined figure into its simple geometrical shapes. 

Step II: Then calculate the area of these simple geometrical shapes separately, 

Step III: Finally, to find the required area of the combined figure we need to add or subtract these areas.

Solved Examples on Area of combined figures:

1. Find the area of the shaded region of the adjoining figure. (Use π = \(\frac{22}{7}\))

Area of Combined Figures

JKLM is a square of side 7 cm. O is the centre of the semicircle MNL.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and a semicircle.

Step II: Then calculate the area of these simple geometrical shapes separately.

Area of the square JKLM = 72 cm2

                                    = 49 cm2

Area of the semicircle LNM = \(\frac{1}{2}\) π ∙ \((\frac{7}{2})^{2}\) cm2 , [Since, diameter LM = 7 cm]

                                       = \(\frac{1}{2}\)  ∙  \(\frac{22}{7}\) ∙ \(\frac{49}{4}\) cm2

                                       = \(\frac{77}{4}\) cm2

                                       = 19.25 cm2

Step III: Finally, add these areas up to get the total area of the combined figure.

Therefore, the required area = 49 cm2 + 19.25 cm2

                                          = 68.25 cm2.


2. In the adjoining figure, PQRS is a square of side 14 cm and O is the centre of the circle touching all sides of the square. 

Area of a Composite Figure

Find the area of the shaded region.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and a circle.

Step II: Then calculate the area of these simple geometrical shapes separately.

Area of the square PQRS = 142 cm2

                                    = 196 cm2

Area of the circle with centre O = π ∙ 72 cm2, [Since, diameter SR = 14 cm]

                                             = \(\frac{22}{7}\) ∙ 49 cm2

                                             = 22 × 7 cm2

                                             = 154 cm2

Step III: Finally, to find the required area of the combined figure we need to subtract the area of the circle from the area of the square.

 

Therefore, the required area = 196 cm2 - 154 cm2

                                          = 42 cm2


3. In the adjoining figure alongside, there are four equal quadrants of circles each of radius 3.5 cm, their centres being P, Q, R and S. 

Area of Compound Shapes

Find the area of the shaded region.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and four quadrants.

Step II:Then calculate the area of these simple geometrical shapes separately.

Area of the square PQRS = 72 cm2, [Since, side of the square = 7 cm]

                                                = 49 cm2

Area of the quadrant APB = \(\frac{1}{4}\) π ∙ r2 cm2

                                = \(\frac{1}{4}\) ∙ \(\frac{22}{7}\)  ∙  \((\frac{7}{2})^{2}\) cm2, [Since, side of the square = 7 cm and radius of the quadrant = \(\frac{7}{2}\) cm]

                                = \(\frac{77}{8}\) cm2

There are four quadrants and they have the same area.

So, total area of the four quadrants = 4 × \(\frac{77}{8}\) cm2

                                                    = \(\frac{77}{2}\) cm2

                                                    = \(\frac{77}{2}\) cm2

Step III: Finally, to find the required area of the combined figure we need to subtract the area of the four quadrants from the area of the square.

Therefore, the required area = 49 cm2 - \(\frac{77}{2}\) cm2

                                          = \(\frac{21}{2}\) cm2

                                          = 10.5 cm2




10th Grade Math

From Areas of Combined Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Subtracting Integers | Subtraction of Integers |Fundamental Operations

    Jun 13, 24 02:51 AM

    Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

    Read More

  2. Properties of Subtracting Integers | Subtraction of Integers |Examples

    Jun 13, 24 02:28 AM

    The properties of subtracting integers are explained here along with the examples. 1. The difference (subtraction) of any two integers is always an integer. Examples: (a) (+7) – (+4) = 7 - 4 = 3

    Read More

  3. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Jun 13, 24 12:11 AM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  4. Addition of Integers | Adding Integers on a Number Line | Examples

    Jun 12, 24 01:11 PM

    Addition of Integers
    We will learn addition of integers using number line. We know that counting forward means addition. When we add positive integers, we move to the right on the number line. For example to add +2 and +4…

    Read More

  5. Worksheet on Adding Integers | Integers Worksheets | Answers |Addition

    Jun 11, 24 07:15 PM

    Worksheet on Adding Integers
    Practice the questions given in the worksheet on adding integers. We know that the sum of any two integers is always an integer. I. Add the following integers:

    Read More