Area and Perimeter of Combined Figures

Here we will solve different types of problems on finding the area and perimeter of combined figures.

1. Find the area of the shaded region in which PQR is an equilateral triangle of side 7√3 cm. O is the centre of the circle.

Area and Perimeter of Combined Figures

 (Use π = \(\frac{22}{7}\) and √3 = 1.732.)

Solution:

The centre O of the circle is the circumcentre of the equilateral triangle PQR. 

Circumcentre of the Equilateral Triangle

So, O is also the centroid of the equilateral triangle and QS ⊥ PR, OQ = 2OS. If the radius of the circle be r cm then

OQ = r cm,

OS = \(\frac{r}{2}\) cm,

RS = \(\frac{1}{2}\) PR = \(\frac{7√3}{2}\) cm

Therefore, QS\(^{2}\) = QR\(^{2}\) - RS\(^{2}\)

or, (\(\frac{3r}{2}\))\(^{2}\) = (7√3)\(^{2}\) - (\(\frac{7√3}{2}\))\(^{2}\)

or, \(\frac{9}{4}\) r\(^{2}\) = (1 - \(\frac{1}{4}\)) (7√3)\(^{2}\)

or, \(\frac{9}{4}\) r\(^{2}\) = \(\frac{3}{4}\) × 49 × 3

or, r\(^{2}\) = \(\frac{3}{4}\) × 49 × 3 × \(\frac{4}{9}\)

or, r\(^{2}\) = 49

Therefore, r = 7

Therefore, area of the shaded region = Area of the circle – Area of the equilateral triangle

                                                      = πr\(^{2}\) - \(\frac{√3}{4}\) a\(^{2}\)

                                                      = \(\frac{22}{7}\) × 7\(^{2}\) cm\(^{2}\) - \(\frac{√3}{4}\) × (7√3)\(^{2}\) cm\(^{2}\) 

                                                      = (154 - \(\frac{√3}{4}\) × 147) cm\(^{2}\)

                                                      = (154 - \(\frac{1.732 × 147}{4}\)) cm\(^{2}\)

                                                      = (154 - \(\frac{254.604}{4}\)) cm\(^{2}\)

                                                      = (154 - 63.651) cm\(^{2}\)

                                                      = 90349 cm\(^{2}\)


2. The radius of the wheels of a car is 35 cm. The car takes 1 hour to cover 66 km. Find the number of revolutions that a wheel of the car makes in one minute. (Use π = \(\frac{22}{7}\).)

Solution:

According to the problem, radius of a wheel = 35 cm.

The perimeter of a wheel = 2πr

                                     = 2 × \(\frac{22}{7}\) × 35 cm

                                     = 220 cm

Therefore, the number of revolutions of a wheel to cover 66 km = \(\frac{66 km}{220 km}\)

                                          = \(\frac{66 × 1000 × 100 cm}{220 cm}\)

                                          = \(\frac{3 × 1000 × 100}{10}\)

                                          = 30000

Therefore, the number of revolutions of a wheel to make in

                                                                 one minute = \(\frac{30000}{60}\)

                                                                                  = 500


3. A circular piece of paper of radius 20 cm is trimmed into the shape of the biggest possible square. Find the area of the paper cut off. (Use π = \(\frac{22}{7}\).)

Solution:

The area of the piece of paper = πr\(^{2}\)

                                            = \(\frac{22}{7}\) × 20\(^{2}\) cm\(^{2}\)

Area of the Paper Cut Off

If the side of the inscribed square be x cm then

20\(^{2}\) = (\(\frac{x}{2}\))\(^{2}\) + (\(\frac{x}{2}\))\(^{2}\)

or, 400 = \(\frac{1}{2}\) x\(^{2}\)

or, x\(^{2}\) = 800.

Therefore, the area of the paper cut off = The area of the circle - The area of the square

                                                          = πr\(^{2}\) - x\(^{2}\)

                                                          = \(\frac{22}{7}\) × 20\(^{2}\) cm\(^{2}\) - 800 cm\(^{2}\)

                                                          = (\(\frac{8800}{7}\) - 800) cm\(^{2}\)

                                                          = \(\frac{3200}{7}\) cm\(^{2}\)

                                                          = 457\(\frac{1}{7}\) cm\(^{2}\)





9th Grade Math

From Area and Perimeter of Combined Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More