Area and Perimeter of Combined Figures

Here we will solve different types of problems on finding the area and perimeter of combined figures.

1. Find the area of the shaded region in which PQR is an equilateral triangle of side 7√3 cm. O is the centre of the circle.

Area and Perimeter of Combined Figures

 (Use π = \(\frac{22}{7}\) and √3 = 1.732.)

Solution:

The centre O of the circle is the circumcentre of the equilateral triangle PQR. 

Circumcentre of the Equilateral Triangle

So, O is also the centroid of the equilateral triangle and QS ⊥ PR, OQ = 2OS. If the radius of the circle be r cm then

OQ = r cm,

OS = \(\frac{r}{2}\) cm,

RS = \(\frac{1}{2}\) PR = \(\frac{7√3}{2}\) cm

Therefore, QS\(^{2}\) = QR\(^{2}\) - RS\(^{2}\)

or, (\(\frac{3r}{2}\))\(^{2}\) = (7√3)\(^{2}\) - (\(\frac{7√3}{2}\))\(^{2}\)

or, \(\frac{9}{4}\) r\(^{2}\) = (1 - \(\frac{1}{4}\)) (7√3)\(^{2}\)

or, \(\frac{9}{4}\) r\(^{2}\) = \(\frac{3}{4}\) × 49 × 3

or, r\(^{2}\) = \(\frac{3}{4}\) × 49 × 3 × \(\frac{4}{9}\)

or, r\(^{2}\) = 49

Therefore, r = 7

Therefore, area of the shaded region = Area of the circle – Area of the equilateral triangle

                                                      = πr\(^{2}\) - \(\frac{√3}{4}\) a\(^{2}\)

                                                      = \(\frac{22}{7}\) × 7\(^{2}\) cm\(^{2}\) - \(\frac{√3}{4}\) × (7√3)\(^{2}\) cm\(^{2}\) 

                                                      = (154 - \(\frac{√3}{4}\) × 147) cm\(^{2}\)

                                                      = (154 - \(\frac{1.732 × 147}{4}\)) cm\(^{2}\)

                                                      = (154 - \(\frac{254.604}{4}\)) cm\(^{2}\)

                                                      = (154 - 63.651) cm\(^{2}\)

                                                      = 90349 cm\(^{2}\)


2. The radius of the wheels of a car is 35 cm. The car takes 1 hour to cover 66 km. Find the number of revolutions that a wheel of the car makes in one minute. (Use π = \(\frac{22}{7}\).)

Solution:

According to the problem, radius of a wheel = 35 cm.

The perimeter of a wheel = 2πr

                                     = 2 × \(\frac{22}{7}\) × 35 cm

                                     = 220 cm

Therefore, the number of revolutions of a wheel to cover 66 km = \(\frac{66 km}{220 km}\)

                                          = \(\frac{66 × 1000 × 100 cm}{220 cm}\)

                                          = \(\frac{3 × 1000 × 100}{10}\)

                                          = 30000

Therefore, the number of revolutions of a wheel to make in

                                                                 one minute = \(\frac{30000}{60}\)

                                                                                  = 500


3. A circular piece of paper of radius 20 cm is trimmed into the shape of the biggest possible square. Find the area of the paper cut off. (Use π = \(\frac{22}{7}\).)

Solution:

The area of the piece of paper = πr\(^{2}\)

                                            = \(\frac{22}{7}\) × 20\(^{2}\) cm\(^{2}\)

Area of the Paper Cut Off

If the side of the inscribed square be x cm then

20\(^{2}\) = (\(\frac{x}{2}\))\(^{2}\) + (\(\frac{x}{2}\))\(^{2}\)

or, 400 = \(\frac{1}{2}\) x\(^{2}\)

or, x\(^{2}\) = 800.

Therefore, the area of the paper cut off = The area of the circle - The area of the square

                                                          = πr\(^{2}\) - x\(^{2}\)

                                                          = \(\frac{22}{7}\) × 20\(^{2}\) cm\(^{2}\) - 800 cm\(^{2}\)

                                                          = (\(\frac{8800}{7}\) - 800) cm\(^{2}\)

                                                          = \(\frac{3200}{7}\) cm\(^{2}\)

                                                          = 457\(\frac{1}{7}\) cm\(^{2}\)





9th Grade Math

From Area and Perimeter of Combined Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More