Area and Perimeter of Combined Figures

Here we will solve different types of problems on finding the area and perimeter of combined figures.

1. Find the area of the shaded region in which PQR is an equilateral triangle of side 7√3 cm. O is the centre of the circle.

Area and Perimeter of Combined Figures

 (Use π = \(\frac{22}{7}\) and √3 = 1.732.)

Solution:

The centre O of the circle is the circumcentre of the equilateral triangle PQR. 

Circumcentre of the Equilateral Triangle

So, O is also the centroid of the equilateral triangle and QS ⊥ PR, OQ = 2OS. If the radius of the circle be r cm then

OQ = r cm,

OS = \(\frac{r}{2}\) cm,

RS = \(\frac{1}{2}\) PR = \(\frac{7√3}{2}\) cm

Therefore, QS\(^{2}\) = QR\(^{2}\) - RS\(^{2}\)

or, (\(\frac{3r}{2}\))\(^{2}\) = (7√3)\(^{2}\) - (\(\frac{7√3}{2}\))\(^{2}\)

or, \(\frac{9}{4}\) r\(^{2}\) = (1 - \(\frac{1}{4}\)) (7√3)\(^{2}\)

or, \(\frac{9}{4}\) r\(^{2}\) = \(\frac{3}{4}\) × 49 × 3

or, r\(^{2}\) = \(\frac{3}{4}\) × 49 × 3 × \(\frac{4}{9}\)

or, r\(^{2}\) = 49

Therefore, r = 7

Therefore, area of the shaded region = Area of the circle – Area of the equilateral triangle

                                                      = πr\(^{2}\) - \(\frac{√3}{4}\) a\(^{2}\)

                                                      = \(\frac{22}{7}\) × 7\(^{2}\) cm\(^{2}\) - \(\frac{√3}{4}\) × (7√3)\(^{2}\) cm\(^{2}\) 

                                                      = (154 - \(\frac{√3}{4}\) × 147) cm\(^{2}\)

                                                      = (154 - \(\frac{1.732 × 147}{4}\)) cm\(^{2}\)

                                                      = (154 - \(\frac{254.604}{4}\)) cm\(^{2}\)

                                                      = (154 - 63.651) cm\(^{2}\)

                                                      = 90349 cm\(^{2}\)


2. The radius of the wheels of a car is 35 cm. The car takes 1 hour to cover 66 km. Find the number of revolutions that a wheel of the car makes in one minute. (Use π = \(\frac{22}{7}\).)

Solution:

According to the problem, radius of a wheel = 35 cm.

The perimeter of a wheel = 2πr

                                     = 2 × \(\frac{22}{7}\) × 35 cm

                                     = 220 cm

Therefore, the number of revolutions of a wheel to cover 66 km = \(\frac{66 km}{220 km}\)

                                          = \(\frac{66 × 1000 × 100 cm}{220 cm}\)

                                          = \(\frac{3 × 1000 × 100}{10}\)

                                          = 30000

Therefore, the number of revolutions of a wheel to make in

                                                                 one minute = \(\frac{30000}{60}\)

                                                                                  = 500


3. A circular piece of paper of radius 20 cm is trimmed into the shape of the biggest possible square. Find the area of the paper cut off. (Use π = \(\frac{22}{7}\).)

Solution:

The area of the piece of paper = πr\(^{2}\)

                                            = \(\frac{22}{7}\) × 20\(^{2}\) cm\(^{2}\)

Area of the Paper Cut Off

If the side of the inscribed square be x cm then

20\(^{2}\) = (\(\frac{x}{2}\))\(^{2}\) + (\(\frac{x}{2}\))\(^{2}\)

or, 400 = \(\frac{1}{2}\) x\(^{2}\)

or, x\(^{2}\) = 800.

Therefore, the area of the paper cut off = The area of the circle - The area of the square

                                                          = πr\(^{2}\) - x\(^{2}\)

                                                          = \(\frac{22}{7}\) × 20\(^{2}\) cm\(^{2}\) - 800 cm\(^{2}\)

                                                          = (\(\frac{8800}{7}\) - 800) cm\(^{2}\)

                                                          = \(\frac{3200}{7}\) cm\(^{2}\)

                                                          = 457\(\frac{1}{7}\) cm\(^{2}\)





9th Grade Math

From Area and Perimeter of Combined Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More