Area and Perimeter of a Sector of a Circle

We will discuss the Area and perimeter of a sector of a circle

We know that

Area and Perimeter of a Sector of a Circle

Therefore,

Area of a sector of a circle = \(\frac{ \theta^{\circ}}{360^{\circ}}\) × Area of the circle = \(\frac{ θ}{360}\) ∙ πr2

where r is the radius of the circle and \(\theta^{\circ}\) is the sectorial angle.

Area and Perimeter of a Sector of a Circle

Also, we know that

Area of a Sector of a Circle

Therefore,

Arc MN = \(\frac{ \theta^{\circ}}{360^{\circ}}\) × Circumference of the circle = \(\frac{ θ}{360}\) ∙ 2πr = \(\frac{πθr}{180}\)

where r is the radius of the circle and \(\theta^{\circ}\) is the sectorial angle.

Thus,

perimeter of a sector of a circle = (\(\frac{πθ}{180}\) ∙ r + 2r) = (\(\frac{πθ}{180}\) + 2)r

where r is the radius of the circle and θ° is the sectorial angle.


Problems on Area and Perimeter of a Sector of a Circle:

1. A plot of land is in the shape of a sector of a circle of radius 28 m. If the sectorial angle (central angle) is 60°, find the area and the perimeter of the plot. (Use π = \(\frac{22}{7}\).)

Solution:

Area of the plot = \(\frac{60^{\circ}}{360^{\circ}}\) ×  πr2 [Since θ = 60]

                       = \(\frac{1}{6}\) ×  πr2

                       = \(\frac{1}{6}\) × \(\frac{22}{7}\) × 282 m2.

                       = \(\frac{1}{6}\) × \(\frac{22}{7}\) × 784 m2.

                       = \(\frac{17248}{42}\) m2.

                       = \(\frac{1232}{3}\) m2.

                       = 410\(\frac{2}{3}\) m2.

Perimeter of a Sector of a Circle


Perimeter of the plot = (\(\frac{πθ}{180}\) + 2)r

                              = (\(\frac{22}{7}\) ∙ \(\frac{60}{180}\) + 2) 28 m

                              = (\(\frac{22}{21}\) + 2) 28 m

                              = \(\frac{64}{21}\) ∙ 28 m

                              = \(\frac{1792}{21}\) m

                              = \(\frac{256}{3}\) m

                              = 85\(\frac{1}{3}\) m.






10th Grade Math

From Area and Perimeter of a Sector of a Circle to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?