Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Area and Circumference of a Circle

Here we will discuss about the area and circumference (Perimeter) of a circle and some solved example problems.

The area (A) of a circle or circular region is given by

A = πr\(^{2}\)

where r is the radius and, by definition,

π = \(\frac{\textrm{circumference}}{\textrm{diameter}}\) = \(\frac{22}{7}\) (approximately).

Area and Circumference of a Circle

The circumference (P) of a circle with radius r is given by, P = 2πr

                                                or,

The perimeter (circumference) of a circular region, with radius r is given by, P = 2πr

Solved example problems on finding the area and circumference (Perimeter) of a circle:

1. The radius of a circular field is 21 m, find its perimeter and area. (Use π = \(\frac{22}{7}\))

Solution:

According to the question, given r = 21 m.

Then, perimeter of a circular field = 2πr

                                                 = 2 × \(\frac{22}{7}\) × 21 m

                                                 = 2 × 22 × 3 m

                                                 = 132 m

Area of a circular field = πr\(^{2}\)

                                 = \(\frac{22}{7}\) × 21\(^{2}\) m\(^{2}\)

                                 = \(\frac{22}{7}\) × 21 × 21 m\(^{2}\)

                                 = 22 × 3 × 21 m\(^{2}\)

                                 = 1386 m\(^{2}\)


2. The perimeter of a circular plate is 132 cm, find its area. (Use π = \(\frac{22}{7}\))

Solution:

Let the radius of the plate be r.

Then, perimeter of a circular plate = 2πr

or, 132 cm = 2 × \(\frac{22}{7}\) × r

or, r = \(\frac{132 \times 7}{2 \times 22}\) cm

       = \(\frac{6 \times 7}{2}\)

       = 21 cm

Therefore, area of a circular plate = πr\(^{2}\)

                                                  = \(\frac{22}{7}\) × 21\(^{2}\) cm\(^{2}\)

                                                  = \(\frac{22}{7}\) × 21 × 21 cm\(^{2}\)

                                                  = 22 × 3 × 21 cm\(^{2}\)

                                                  = 1386 cm\(^{2}\)


3. If the area of a circle is 616 cm\(^{2}\) then, find its circumference. (Use π = \(\frac{22}{7}\))

Solution:

Let the radius of the circle be r cm.

Area of the circle = πr\(^{2}\)

or, 616 cm\(^{2}\) = \(\frac{22}{7}\) × r\(^{2}\)

or, r\(^{2}\) = \(\frac{616 \times 7}{22}\) cm\(^{2}\)

 or, r = \(\sqrt{\frac{616 \times 7}{22}}\) cm

        = \(\sqrt{28 \times 7}\) cm

        = \(\sqrt{2 \times 7 \times 2 \times 7}\) cm

        = \(\sqrt{14 \times 14}\) cm

        = 14 cm

Therefore, radius of the circle = 14 cm.

Therefore, circumference of the circle = 2πr

                                                       = 2 × \(\frac{22}{7}\) × 14

                                                       = 2 × 22 × 2 cm

                                                       = 88 cm





9th Grade Math

From Area and Circumference of a Circle to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.