Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

5th Grade Patterns in Whole Numbers

In 5th grade patterns in whole numbers we will learn patterns in multiples of 3, patterns in the Associative property of whole numbers, patterns in the Distributive property of whole numbers, patterns in addition and subtraction of whole numbers, patterns in multiplication of whole numbers and different types of solve examples on patterns of whole numbers.

Patterns In Multiples of 3:

Consider some numbers which are multiples of 3:

12, 18, 27, 87, 99, 102, 111, 306, 615, 2463

Now, add the digits of these numbers. If the sum of the digits is a two-digit number, then further add its digits. What do you observe? 

The sum of the digits is 3, 6 or 9. Thus, we can say that the sum of the digits of any multiples of 3 is also a multiple of 3.

This property of whole numbers can be used to check whether a given number is a multiple of 3 or not without actual division.


Patterns in the Associative Property:

Associative property of addition and multiplication of whole numbers can be used to find the sum of numbers easily.

Consider the three numbers 89, 346 and 11.

To find the sum of these numbers, we can proceed as follows:

89 + 346 + 11 = (89 + 11) + 346

                      = 100 + 346

                      = 446

Similarly, 783 + 2945 + 217 = (783 + 217) + 2945

                                          = 1000 + 2945

                                          = 3945

To find the product of 125, 378 and 8, proceed as follows:

125 × 378 × 8 = (125 × 8) × 378

                       = 1000 × 378

                       = 378000

Similarly, 50 × 974 × 2 = (50 × 2) × 974

                                   = 100 × 974

                                   = 97400


Patterns in the Distributive Property:

Arithmetic calculation can be done easily using the distributive property of multiplication over addition.

Let us consider the following simplification:

897 × 13 + 87 × 897

Then, 897 × 13 + 87 × 897

      = 897(13 + 87)

      = 897 × 100 = 89700


Similarly, 723 × 956 + 44 × 723

           = 723(956 + 44)

          = 723 × 1000

          = 723000

Patterns in Addition and Subtraction:

We know that 10 - 2 = 9 - 1 = 8 and 93 - 4 = 92 - 3 = 89

This pattern can be used to subtract numbers easily.

For example:

1000 - 786 = 999 - 785 = 214

7900 - 2796 = 7899 - 2795 = 5104

Similarly, 2798 + 998 = 2798 + 1000 - 2

                                 = 3796

and 1234 - 99 = 1234 - 100 + 1

                      = 1135


Patterns in Multiplication:

Observe the following to explore the patterns in the multiplication:

(i) Product of a Number by another Number Ending with 5:

For Example:

482 × 5 = 482 × \(\frac{10}{2}\) = 2410

960 × 25 = 960 × \(\frac{100}{4}\) = 2400

72 × 15 = 72 × \(\frac{30}{2}\) = 36 × 30 = 1080


(ii) Product of a 2-digit or 3-digit Number Ending with 5 by Itself:

           15

       ×  15

         225

         ↓

      1 × 2

           25

       ×  25

         625

         ↓

      2 × 3

           35

       ×  35

         1225

          ↓

       3 × 4

           105

       ×  105

         11025

           ↓

       10 × 11

(ii) Simplification Involving Multiplication, Addition and Subtraction

(2 × 2) - (1 × 1) = 4 - 1 = 3 = 2 + 1

(3 × 3) - (2 × 2) = 9 - 4 = 5 = 3 + 2

(4 × 4) - (3 × 3) = 16 - 9 = 7 = 4 + 3

From this pattern, we get

(101 × 101) - (100 × 100) = 101 + 100 = 201 and

(999 × 999) - (998 × 998) =  999 + 998 = 1000 - 1 + 1000 - 2 = 2000 - 3 = 1997


Solved Examples on 5th Grade Patterns in Whole Numbers:

1. Check whether the following numbers are multiples of 3.

(i) 714

(ii) 2056

Solution:

(i) Sum of the digits of 714 = 7 + 1 + 4 = 12,

    then sum of the digits of 12 = 1 + 2 = 3

So, we can say that 714 is a multiple of 3. 


(ii) Sum of the digits of 2056 = 2 + 0 + 5 + 6 = 13,

     then sum of the digits of 13 = 1 + 3 = 4.

Since 4 is a not a multiple of 3, therefore 2056 is not a multiple of 3.


2. Simplify the following problems using appropriate properties:

(i) 1895 + 3491 + 105

(ii) 4 × 479 × 25

(iii) 67891 × 67 + 67891 × 33

(iv) 9756 × 116 - 16 × 9756

(v) 1723 × 102

(vi) 1489 × 99


Solution:

(i) 1895 + 3491 + 105 = (1895 + 105) + 3491

                                 = 2000 + 3491

                                 = 5491

(ii) 4 × 479 × 25 = (4 × 25) × 479

                          = 100 × 479

                          = 47900

(iii) 67891 × 67 + 67891 × 33 = 67891 × (67 + 33)

                                             = 67891 × 100

                                             = 6789100

(iv) 9756 × 116 - 16 × 9756 = 9756 × (116 - 16)

                                           = 9756 × 100

                                           = 975600

(v) 1723 × 102 = 1723 (100 + 2)

                       = 1723 × 100 + 1723 × 2

                       = 172300 + 3446

                       = 175746

(vi) 1489 × 99 = 1489 × (100 - 1)

                      = 148900 - 1489

                      = 147411


3. Find the difference using patterns:

(i) 8000 - 2475

(ii) 10000 - 7658


Solution:

(i) 8000 - 2475 = 7999 - 2474

                       = 5525

(ii) 10000 - 7658 = 9999 - 7657

                         = 2342


4. Evaluate the following using suitable patterns:

(1) 1979 + 99

(ii) 2013 + 199

(iii) 848 × 25

(iv) 128 × 125


Solution:

(i) 1979 + 99 = 1979 + 100 - 1

                     = 2079 - 1

                     = 2078

(ii) 2013 + 199 = 2013 + 200 - 1

                       = 2213 - 1

                       = 2212

(iii) 848 × 25 = 848 × \(\frac{100}{4}\)

                    = 212 × 100

                    = 21200

(iv) 128 × 125 = 128 × \(\frac{1000}{8}\)

                      = 16000


5. Evaluate the following using patterns:

(i) 95 × 95

(ii) 205 × 205

(iii) (89 × 89) + (88 × 8)

(iv) (2000 × 2000) - (1999 × 1999)


Solution:

(i)

                    95

                × 95

               9025

                ↓

            9 × 10

(ii)

                    205

                × 205

               42025

                 ↓

            20 × 21

(ii) (89 × 89) + (88 × 88) = 89 + 88 = 177

(iv) (2000 × 2000) - (1999 × 1999) = 2000 + 1999 = 3999



5th Grade Math Problems 

From 5th Grade Patterns in Whole Numbers to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.