Dividend, Divisor, Quotient and Remainder

In division we will see the relationship between the dividend, divisor, quotient and remainder. The number which we divide is called the dividend. The number by which we divide is called the divisor. The result obtained is called the quotient. The number left over is called the remainder.

Dividend, Divisor, Quotient and Remainder

        55           ÷         9           =           6           and           1

     Dividend                Divisor                  Quotient                  Remainder

For example:

(i) Divide 217 by 4

Divide 217 by 4

Here, Dividend = 217

Divisor = 4

Quotient = 54

Remainder = 1

(ii) Divide 5679 by 7

Divide 5679 by 7


Here, Dividend = 5679

Divisor = 7

Quotient = 811

Remainder = 2

Remainder, 55 ÷ 9 can also write as 9) 55 ( or 9) 55 

Note: dividend = divisor × quotient + remainder


The dividend, divisor, quotient and remainder will help us to verify the answer of division. Add remainder (if any) with the product of divisor and quotient. The sum we get should be equal to the dividend.

Let us consider some examples to verify the answer of division.

(i) Divide 38468 by 17 and verify the answer.

Divide 38468 by 17 and Verify the Answer

Now let us verify the answer;

dividend = divisor × quotient + remainder

   38468  =   17   ×    2262   +    14

             =   38454 + 14

             =   38468

So, the answer is correct.

The quotient is 2262 and the remainder is 14.


(ii) Divide 58791 by 36 and verify the answer.

Divide 58791 by 36 and Verify the Answer

Now let us verify the answer;

dividend = divisor × quotient + remainder

  58791  =    36   ×   1633    +     3

            =      58788 + 3

            =      58791

So, the answer is correct.

The quotient is 1633 and the remainder is 3.


Properties of division:

When zero is divided by a number the quotient is zero.

For example:

(i) 0 ÷ 4 = 0

(ii) 0 ÷ 12 = 0

(iii) 0 ÷ 25 = 0

(iv) 0 ÷ 314 = 0

(v) 0 ÷ 225 = 0

(vi) 0 ÷ 7135 = 0


Division of a number by zero is not possible.

For example, we cannot divide 74 by 0.


If we divide any number by 1, the quotient is the number itself.

For example:

(i) 28 ÷ 1 = 28

(ii) 4558 ÷ 1 = 4558

(iii) 335 ÷ 1 = 335

(iv) 9387 ÷ 1 = 9387


If we divide a non-zero number by itself, the quotient is 1.

For example:

(i) 45 ÷ 45 = 1

(ii) 98 ÷ 98 = 1

(iii) 1371 ÷ 1371 = 1

(iv) 5138 ÷ 5138 = 1





4th Grade Math Activities

From Dividend, Divisor, Quotient and Remainder to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.