Trigonometrical Ratios of 60°

How to find the Trigonometrical Ratios of 60°?

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti-clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = 60° is shown in the above picture.

Take a point P on \(\overrightarrow{OY}\) and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\).

Trigonometrical Ratios of 60°

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti-clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = 60° is shown in the above picture.

Take a point P on \(\overrightarrow{OY}\) and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\).

Now, take a point R on \(\overrightarrow{OX}\) such that \(\overline{OQ}\) = \(\overline{QR}\)  and join \(\overline{PR}\).

From △OPQ and △PQR we get,

\(\overline{OQ}\)  = \(\overline{QR}\),

\(\overline{PQ}\) common

and ∠PQO = ∠PQR (both are right angles)

Thus, the triangles are congruent.

Therefore,  ∠PRO = ∠POQ = 60°

Therefore, ∠OPR

= 180°  - ∠POQ - ∠PRO

= 180°  - 60° - 60°

=  60°

Therefore, the △POR is equilateral triangle

Let, OP = OR = 2a;

Thus, OQ = a.

Now, from pythagoras theorem we get,

OQ2 + PQ2 = OP2

⇒ a2 + PQ2 = (2a)2

⇒ PQ2 = 4a2 – a2

⇒ PQ2 = 3a2

Taking square roots on both the sides we get,

PQ = √3a (since, PQ > 0)

Therefore, from the right angled triangle POQ we get,
sin 60° = \(\frac{\overline{PQ}}{\overline{OP}} = \frac{\sqrt{3} a}{2a} = \frac{\sqrt{3}}{2}\);
cos 60° = \(\frac{\overline{OQ}}{\overline{OP}} = \frac{a}{2a} = \frac{1}{2}\)
And tan 60° = \(\frac{\overline{PQ}}{\overline{OQ}} = \frac{\sqrt{3} a}{a} = \sqrt{3}\)
Therefore, csc 60° = \(\frac{1}{sin  60°} = \frac{2}{\sqrt{3}} = \frac{2 \sqrt{3}}{3}\)
sec 60° = \(\frac{1}{cos  60°} \)= 2
And cot 60° =  \(\frac{1}{tan  60°} = \frac{1}{\sqrt{3}} = \frac{ \sqrt{3}}{3}\)


Trigonometrical Ratios of 60° are commonly called standard angles and the trigonometrical ratios of these angles are frequently used to solve particular angles.

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of 60° to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Adding 5-digit Numbers with Regrouping | 5-digit Addition |Addition

    Mar 18, 24 02:31 PM

    Adding 5-digit Numbers with Regrouping
    We will learn adding 5-digit numbers with regrouping. We have learnt the addition of 4-digit numbers with regrouping and now in the same way we will do addition of 5-digit numbers with regrouping. We…

    Read More

  2. Adding 4-digit Numbers with Regrouping | 4-digit Addition |Addition

    Mar 18, 24 12:19 PM

    Adding 4-digit Numbers with Regrouping
    We will learn adding 4-digit numbers with regrouping. Addition of 4-digit numbers can be done in the same way as we do addition of smaller numbers. We first arrange the numbers one below the other in…

    Read More

  3. Worksheet on Adding 4-digit Numbers without Regrouping | Answers |Math

    Mar 16, 24 05:02 PM

    Missing Digits in Addition
    In worksheet on adding 4-digit numbers without regrouping we will solve the addition of 4-digit numbers without regrouping or without carrying, 4-digit vertical addition, arrange in columns and add an…

    Read More

  4. Adding 4-digit Numbers without Regrouping | 4-digit Addition |Addition

    Mar 15, 24 04:52 PM

    Adding 4-digit Numbers without Regrouping
    We will learn adding 4-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then add the digits under each column as shown in the following exa…

    Read More

  5. Addition of Three 3-Digit Numbers | With and With out Regrouping |Math

    Mar 15, 24 04:33 PM

    Addition of Three 3-Digit Numbers Without Regrouping
    Without regrouping: Adding three 3-digit numbers is same as adding two 3-digit numbers.

    Read More