Trigonometrical Ratios of (180° - θ)

What are the relations among all the trigonometrical ratios of (180° - θ)?

In trigonometrical ratios of angles (180° - θ) we will find the relation between all six trigonometrical ratios.

 We know that,

sin (90° + θ) = cos θ

cos (90° + θ) = - sin θ

tan (90° + θ) = - cot θ

csc (90° + θ) = sec θ

sec ( 90° + θ) = - csc θ

cot ( 90° + θ) = - tan θ

and

sin (90° - θ) = cos θ

cos (90° - θ) = sin θ

tan (90° - θ) = cot θ

csc (90° - θ) = sec θ

sec (90° - θ) = csc θ

cot (90° - θ) = tan θ

Using the above proved results we will prove all six trigonometrical ratios of (180° - θ).

sin (180° - θ) = sin (90° + 90° - θ)

                   = sin [90° + (90° - θ)]

                   = cos (90° - θ), [since sin (90° + θ) = cos θ]

Therefore, sin (180° - θ) = sin θ, [since cos (90° - θ) = sin θ]

 

cos (180° - θ) = cos (90° + 90° - θ)

                    = cos [90° + (90° - θ)]

                    = - sin (90° - θ), [since cos (90° + θ) = -sin θ]

Therefore, cos (180° - θ) = - cos θ, [since sin (90° - θ) = cos θ]

 

tan (180° - θ) = cos (90° + 90° - θ)

                    = tan [90° + (90° - θ)]

                    = - cot (90° - θ), [since tan (90° + θ) = -cot θ]

Therefore, tan (180° - θ) = - tan θ, [since cot (90° - θ) = tan θ]


csc (180° - θ) = \(\frac{1}{sin (180° - \Theta)}\)

                    = \(\frac{1}{sin  \Theta}\), [since sin (180° - θ) = sin θ]

Therefore, csc (180° - θ) = csc θ;


sec (180° - θ) = \(\frac{1}{cos (180° - \Theta)}\)

                    = \(\frac{1}{- cos  \Theta}\), [since cos (180° - θ) = - cos θ]

Therefore, sec (180° - θ) = - sec θ

and

cot (180° - θ) = \(\frac{1}{tan (180° - \Theta)}\)

                    = \(\frac{1}{- tan  \Theta}\), [since tan (180° - θ) = - tan θ]

Therefore, cot (180° - θ) =  - cot θ.


Solved examples:

1. Find the value of sec 150°.

Solution:

sec 150° = sec (180 - 30)°

            = - sec 30°; since we know, sec (180° - θ) = - sec θ

            = - \(\frac{2}{√3}\)


2. Find the value of tan 120°.

Solution:

tan 120° = tan (180 - 60)°

            = - tan 60°; since we know, tan (180° - θ) = - tan θ

            = - √3





11 and 12 Grade Math

From Trigonometrical Ratios of (180° - θ) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.