In mathematics, a very important branch is Trigonometry and in trigonometry one of the important parts is Trigonometric angles.
The word ‘Trigonometry’ has been derived from Greek words ‘trigon’ meaning three angles and ‘metron’ which means measurement.
Therefore, basically the object of trigonometry was to deal with the measurement of triangles. Trigonometry was also involved in the establishment of relations between the sides, angles and area of a triangle. Nowadays, the object of trigonometry deals not only with the angles of a triangle but the measure of all sorts of positive and negative angles. Thus this branch in mathematics has widened. Trigonometry is also used in science which involves measurement of angles.
Important to know about Trigonometric angles:
● Radian: In circular measure a radian is the unit of angle. It is defined as the angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle.
● A radian is a constant angle.
1 radian = 2/π right angle = 57°17' (44.8)" (approx.)
● If r is the radius of a circle then its circumference = 2πr where π is a constant whose approximate value is 22/7 and more accurate value is 3.14159.
● Generally the unit radian is not mentioned in the measurement of an angle in circular system. For example, the angle π^{c}/2 is usually written as π/2.Therefore, if the unit in the measurement of an angle is not mentioned, it is to be taken in circular unit i.e., in radian. Thus, an angle having measure 2 means 2^{c}, π/6 means π^{c}/6; note that, an angle π/4 means π^{c}/4 = 180°/4 = 45°.● If an arc of length s of a circle of radius r subtends an angle θ radian at its center then
s = rθ
or, θ = s/r.
● Measurement of Angles
From Trigonometric Angles to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
