tan 3A in Terms of A

We will learn how to express the multiple angle of tan 3A in terms of A or tan 3A in terms of tan A.

Trigonometric function of tan 3A in terms of tan A is also known as one of the double angle formula.

If A is a number or angle then we have, tan 3A = \(\frac{3  tan  A  -  tan^{3}  A}{1  -  3  tan^{2}  A}\)

Now we will proof the above multiple angle formula step-by-step.

Proof: tan 3A

= tan (2A + A)

= \(\frac{tan  2A  +  tan  A}{1  -  tan  2A  \cdot  tan  A}\)

= \(\frac{\frac{2  tan  A}{1  -  tan^{2}  A}  +  tan  A}{1  -  \frac{2  tan  A}{1  -  tan^{2}  A}  \cdot  tan  A}\)

= \(\frac{2  tan  A  +  tan  A  -  tan^{3}  A}{1  -  tan^{2}  A  -  2  tan^{2}  A}\)

= \(\frac{3  tan  A  -  tan^{3}  A}{1  -  3  tan^{2}  A}\)

Therefore, tan 3A = \(\frac{3  tan  A  -  tan^{3}  A}{1  -  3  tan^{2}  A}\)

Note:

(i) In the above formula we should note that the angle on the R.H.S. of the formula is one-third of the angle on L.H.S. Therefore, tan 30° = \(\frac{3  tan  10°  -  tan^{3}  10°}{1  -  3  tan^{2}  10°}\).

(ii) The value of tan 3A can also be obtain by putting A = B = C in the formula

tan (A + B + C) = \(\frac{tan  A  +  tan  B  +  tan  C  -  tan  A  tan  B  tan  C}{1  -  tan  A  tan  B  -  tan  B  tan  C  -  tan  C  tan  A}\)



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.