Definition of Subset:

If A and B are
two sets, and every element of set A is also an element of set B, then A
is called a subset of B and we write it as **A ⊆ B** or **B ⊇ A**

The symbol **⊂** stands for ‘is a subset of’ or ‘is contained in’

• Every set is a subset of itself, i.e., A ⊂ A, B ⊂ B.

• Empty set is a subset of every set.

• Symbol ‘⊆’ is used to denote ‘is a subset of’ or ‘is contained in’.

• A ⊆ B means A is a subset of B or A is contained in B.

• B ⊆ A means B contains A.

**For example; **

**1.** Let A = {2, 4, 6}

B = {6, 4, 8, 2}

Here A is a subset of B

Since, all the elements of set A are contained in set B.

But B is not the subset of A

Since, all the elements of set B are not contained in set A.

**Notes:**

If ACB and BCA, then A = B, i.e., they are equal sets.

Every set is a subset of itself.

**Null set** or **∅** is a subset of every set.

**2.** The set N of natural numbers is a subset of the set Z of integers and we write N ⊂ Z.

**3.** Let A = {2, 4, 6}

B = {x : x is an even natural number less than 8}

Here A ⊂ B and B ⊂ A.

Hence, we can say A = B

**4.** Let A = {1, 2, 3, 4}

B = {4, 5, 6, 7}

Here A ⊄ B and also B ⊄ C

[**⊄** denotes ‘not a subset of’]

Super Set:

Whenever a set A is a subset of set B, we say the B is a superset of A and we write, B ⊇ A.

Symbol ⊇ is used to denote ‘is a super set of’

**For example;**

A = {a, e, i, o, u}

B = {a, b, c, ............., z}

Here A ⊆ B i.e., A is a subset of B but B ⊇ A i.e., B is a super set of A

Proper Subset:

If A and B are two sets, then A is called the proper subset of B if A ⊆ B but B ⊇ A i.e., A ≠ B. The symbol ‘⊂’ is used to denote proper subset. Symbolically, we write A ⊂ B.

**For example; **

**1.** A = {1, 2, 3, 4}

Here n(A) = 4

B = {1, 2, 3, 4, 5}

Here n(B) = 5

We observe that, all the elements of A are present in B but the element ‘5’ of B is not present in A.

So, we say that A is a proper subset of B.

Symbolically, we write it as A ⊂ B

**Notes:**

No set is a proper subset of itself.

Null set or ∅ is a proper subset of every set.

**2.** A = {p, q, r}

B = {p, q, r, s, t}

Here A is a proper subset of B as all the elements of set A are in set B and also A ≠ B.

**Notes:**

No set is a proper subset of itself.

Empty set is a proper subset of every set.

Power Set:

The collection of all subsets of set A is called the power set of A. It is denoted by P(A). In P(A), every element is a set.

**For example;**

If A = {p, q} then all the subsets of A will be

P(A) = {∅, {p}, {q}, {p, q}}

Number of elements of P(A) = n[P(A)] = 4 = 22

In general, n[P(A)] = 2m where m is the number of elements in set A.

Universal Set

A set which contains all the elements of other given sets is called a **universal set**. The symbol for denoting a universal set is **∪** or **ξ**.

**For example; **

**1.** If A = {1, 2, 3} B = {2, 3, 4} C = {3, 5, 7}

then U = {1, 2, 3, 4, 5, 7}

[Here A ⊆ U, B ⊆ U, C ⊆ U and U ⊇ A, U ⊇ B, U ⊇ C]

**2.** If P is a set of all whole numbers and Q is a set of all negative numbers then the universal set is a set of all integers.

**3.** If A = {a, b, c} B = {d, e} C = {f, g, h, i}

then U = {a, b, c, d, e, f, g, h, i} can be taken as universal set.

● **Set Theory**

●** Sets**

**7th Grade Math Problems**

**From Subset to HOME PAGE**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.