Sines and Cosines of Multiples or Submultiples

We will learn how to solve identities involving sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving sines and cosines.

(i) Take the first two terms of L.H.S. and express the sum of two sines (or cosines) as product. 

(ii) In the third term of L.H.S. apply the formula of sin 2A (or cos 2A).

(iii) Then use the condition A + B + C = π and take one sine (or cosine) term common. 

(iv) Finally, express the sum or difference of two sines (or cosines) in the brackets as product. 

1. If A + B + C= π   prove that, 

sin A + sin B - sin C = 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)

Solution:

We have,

A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Therefore, sin (\(\frac{A + B}{2}\)) = sin (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = cos  \(\frac{C}{2}\)

Now, L.H.S. = sin A + sin B - sin C

= (sin A + sin B) - sin C

= 2 sin (\(\frac{A + B}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π - C}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π}{2}\) -  \(\frac{C}{2}\)) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - 2 sin \(\frac{C}{2}\) cos \(\frac{C}{2}\)

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - cos (\(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos  (\(\frac{A}{2}\) -  \(\frac{B}{2}\)) - cos  (\(\frac{A}{2}\) + \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\) [(cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\)) - (cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\)   sin \(\frac{B}{2}\)]

= 4 sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)  = R.H.S.                    Proved.

2. If A, B, C be the angles of a triangle, prove that, 

cos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

Since A, B, C are the angles of a triangle,

Therefore, A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Thus, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)

Now, L. H. S. = cos A + cos B + cos C

= (cos A + cos B) + cos C  

= 2 cos (\(\frac{A + B}{2}\))  cos (\(\frac{A - B}{2}\))  + cos C

= 2 cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) cos (\(\frac{A - B}{2}\))  + cos C

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) + 1 - 2 sin\(^{2}\) \(\frac{C}{2}\)

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) - 2 sin\(^{2}\) \(\frac{C}{2}\) + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin \(\frac{C}{2}\)] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - cos (\(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\) [2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)] + 1

= 4 sin \(\frac{C}{2}\) sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) + 1

= 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)                    Proved.


3. If A +  B + C = π prove that, 
sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)  = 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)  

Solution:

A + B + C = π          

⇒ \(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)

Therefore, sin \(\frac{C}{2}\) = sin (\(\frac{π }{2}\)  - \(\frac{A + B}{2}\))  = cos \(\frac{A + B}{2}\)

Now, L. H. S. = sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)

= 2 sin \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{C}{2}\))

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + cos \(\frac{π - C}{2}\)

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + 1 – 2 sin\(^{2}\) \(\frac{π - C}{4}\)

= 2 sin \(\frac{π - C}{4}\)  cos \(\frac{A - B}{4}\) - 2 sin\(^{2}\) \(\frac{π - C}{4}\) + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - sin \(\frac{π - C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - cos {\(\frac{π}{2}\)  - \(\frac{π - C}{4}\)}] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos (\(\frac{π}{4}\) + \(\frac{C}{4}\))] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos \(\frac{π + C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A - B + π + C}{8}\)  sin \(\frac{π + C - A + B}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A + C + π - B}{8}\) sin \(\frac{B + C + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B + π - B}{8}\) sin \(\frac{π - A + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)] + 1

= 4 sin \(\frac{π - C}{4}\) sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)  + 1

= 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)                    Proved.

 

 

4. If A + B + C = π show that, 
cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\) =  4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\)

Solution:

A + B + C = π   

\(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)
Therefore, cos \(\frac{C}{2}\) = cos (\(\frac{π}{2}\) - \(\frac{A + B}{2}\)) = sin \(\frac{A + B}{2}\)

Now, L. H. S. = cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\)

= (cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\)) + cos \(\frac{C}{2}\)

= 2 cos \(\frac{A + B}{4}\)  cos \(\frac{A - B}{4}\) +  sin \(\frac{A + B}{2}\)  [Since, cos \(\frac{C}{2}\)  = sin \(\frac{A + B}{2}\)] 

= 2 cos \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + 2 sin \(\frac{A + B}{4}\) cos \(\frac{A + B}{4}\)

= 2 cos  \(\frac{A + B}{4}\)[cos \(\frac{A - B}{4}\) + sin \(\frac{A + B}{4}\)]

= 2 cos \(\frac{A + B}{4}\) [cos \(\frac{A + B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{A + B}{4}\))] 

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{\frac{A - B}{4} + \frac{π}{2} - \frac{A + B}{4}}{2}\) cos  \(\frac{\frac{π}{2} - \frac{A + B}{4} - \frac{A - B}{4}}{2}\)]

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{π - B}{4}\) cos \(\frac{π - A}{4}\)]

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{C + A}{4}\)  cos \(\frac{B + C}{4}\), [Since, π - B = A + B + C - B = A + C; Similarly, π - A = B + C] 

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\).                     Proved.

 Conditional Trigonometric Identities





11 and 12 Grade Math

From Sines and Cosines of Multiples or Submultiples to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Multiplication of a Number by a 3-Digit Number |3-Digit Multiplication

    Mar 28, 24 09:40 AM

    Multiplying by 3-Digit Number
    In multiplication of a number by a 3-digit number are explained here step by step. Consider the following examples on multiplication of a number by a 3-digit number: 1. Find the product of 36 × 137

    Read More

  2. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  3. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  4. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  5. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Mar 25, 24 04:18 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More