Problems on Distance Between Two Points

Solving the problems on distance between two points with the help of the formula, in the below examples use the formula to find distance between two points.

Worked-out problems on distance between two points:

1. Show that the points (3, 0), (6, 4) and (- 1, 3 ) are the vertices of a right-angled Isosceles triangle. 

Solution:
 Let the given points be A(3, 0), B (6, 4) and C (-1, 3). Then we have, 

AB² = (6 - 3)² + (4 - 0)² = 9 + 16 = 25; 

BC² = (-1 - 6)² + (3 - 4 )² = 49 + 1= 50 

and CA² = (3 + 1)² + (0 - 3)² = 16 + 9= 25. 

From the above results we get, 

AB² = CA² i.e., AB = CA, 

which proves that the triangle ABC is isosceles. 

Again, AB² + AC² = 25 + 25 = 50 = BC² 

which shows that the triangle ABC is right-angled. 

Therefore, the triangle formed by joining the given points is a right-angled isosceles triangle. Proved


2. If the three points (a, b), (a + k cos α, b + k sin α) and (a + k cos β, b + k sin β) are the vertices of an equilateral triangle, then which of the following is true and why ? 

(i) | α - β| = π/4

(ii) |α - β| = π/2

(iii) |α - β| = π/6

(iv) |α - β| = π/3

Solution:

Let the vertices of the triangle be A (a, b), B (a + k cos α, b + k sin α) and C (a + k cos β, b + k sin β).

Now, AB² = (a + k cos α - a)² + (b + k sin α - b)²

= k² cos² α + k² sin² α = k²;

Similarly, CA² = k² and

BC² = (a + k cos β - a - k cos α)² + (b + k sin β - b - k sin α)²

= k² (cos² β + cos² α - 2 cos α cos β + sin² β + sin² α - 2 sin α sin β)

= k² [cos² β + sin² β + cos² α + sin² α - 2(cos α cos β + sin α sin β)]

= k² [1 + 1 - 2 cos (α - β)]

= 2k² [1 - cos (α - β)]

Since ABC is an equilateral triangle, hence

AB² = BC²

or, k² = 2k² [1 - cos (α - β)]

or, 1/2 = 1 - cos(α - β) [since, k # 0]

or, cos (α - β) = 1/2 = cos π/3

Therefore, |α - β| = π/3 .

There for, condition (iv) is true.



3. Find the point on the y-axis which is equidistant from the points (2, 3)and(-1, 2).

Solution:

Let P(0, y) be the required point on the y-axis and the given points are A (2, 3) and B(- 1, 2). By question,

PA = PB = PA² = PB²

or, (2 - 0)² + (3 - y)² = (-1 - 0)² + (2 – y)²

or, 4 + 9 + y² - 6y = 1 + 4 + y² - 4y

or, - 6y + 4y = 1 - 9 or, - 2y = -8

or, y = 4.

Therefore, the required point on the y-axis is (0, 4).

4. Find the circum-centre and circum-radius of the triangle whose vertices are (3, 4), (3, - 6) and (- 1, 2). 


Solution:
 

Let A(3, 4), B (3, - 6), C (- 1, 2) be the vertices of the triangle and P(x, y ) the required circum-centre and r the circum-radius. Then, we must have, 

r² = PA² = (x - 3)² + (y - 4)² ……………………..(1) 

r² = PB² = (x - 3)² + (y + 6)² ……………………….(2) 

and r² = PC² = (x + 1)² + (y - 2)² ……………………….(3) 

From (1) and (2) we get, 

(x - 3)² + (y - 4)² = (x - 3)² + (y + 6)² 

Or, y² - 8y + 16 = y² + 12y + 36 

or, - 20y = 20 or, y = - 1 

Again, from (2) and (3) we get, 

(x - 3)² + (y + 6)² = (x + 1 )² + (y - 2)²

or, x² - 6x + 9 + 25 = x² + 2x + 1 + 9 [putting y = - 1] 

or, - 8x = - 24 

or, x = 3 

Finally, putting x = 3 and y = - 1 in (1) we get, 

r² = 0² + (-1 - 4)² = 25 

Therefore, r = 5 

Therefore, the co-ordinates of circum-centre are (3, - 1) and circum-radius = 5 units. 



5. Show that the four points (2, 5), (5, 9), (9, 12) and (6, 8) when joined in order, form a rhombus. 

Solution:
 

Let the given points be A(2, 5), B (5, 9), C (9, 12) and D(6, 8). Now, AB² = (5 - 2)² + (9 - 5)² = 9 + 16 = 25

BC² = (9 - 5)² + (12 - 9)² = 16 + 9 = 25

CD² = (6 - 9)² (8 - 12)² = 9 + 16 = 25

DA² = (2 - 6)² + (5 - 8)² = 16 + 9 = 25

AC² = ( 9 - 2)² + (12 - 5)² = 49 + 49 = 98

and BD² = (6 - 5)² + (8 - 9)² = 1 + 1 = 2

From the above result we see that

AB = BC = CD = DA and AC ≠ BD

That is the four sides of the quadrilateral ABCD are equal but diagonals AC and BD are not equal. Therefore, the quadrilateral ABCD is a rhombus. Proved.

The above worked-out problems on distance between two points are explained step-by-step with the help of the formula.

 Co-ordinate Geometry 




11 and 12 Grade Math 

From Problems on Distance Between Two Points to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Adding 5-digit Numbers with Regrouping | 5-digit Addition |Addition

    Mar 18, 24 02:31 PM

    Adding 5-digit Numbers with Regrouping
    We will learn adding 5-digit numbers with regrouping. We have learnt the addition of 4-digit numbers with regrouping and now in the same way we will do addition of 5-digit numbers with regrouping. We…

    Read More

  2. Adding 4-digit Numbers with Regrouping | 4-digit Addition |Addition

    Mar 18, 24 12:19 PM

    Adding 4-digit Numbers with Regrouping
    We will learn adding 4-digit numbers with regrouping. Addition of 4-digit numbers can be done in the same way as we do addition of smaller numbers. We first arrange the numbers one below the other in…

    Read More

  3. Worksheet on Adding 4-digit Numbers without Regrouping | Answers |Math

    Mar 16, 24 05:02 PM

    Missing Digits in Addition
    In worksheet on adding 4-digit numbers without regrouping we will solve the addition of 4-digit numbers without regrouping or without carrying, 4-digit vertical addition, arrange in columns and add an…

    Read More

  4. Adding 4-digit Numbers without Regrouping | 4-digit Addition |Addition

    Mar 15, 24 04:52 PM

    Adding 4-digit Numbers without Regrouping
    We will learn adding 4-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then add the digits under each column as shown in the following exa…

    Read More

  5. Addition of Three 3-Digit Numbers | With and With out Regrouping |Math

    Mar 15, 24 04:33 PM

    Addition of Three 3-Digit Numbers Without Regrouping
    Without regrouping: Adding three 3-digit numbers is same as adding two 3-digit numbers.

    Read More