We will discuss here about some of the general properties of quadratic equation.
We know that the general form of quadratic equation is ax^2 + bx + c = 0, where a is the coefficient of x^2, b is the coefficient of x, c is the constant term and a ≠ 0, since, if a = 0, then the equation will no longer remain a quadratic
When we are expressing any quadratic equation in the form of ax^2 + bx + c =0, we have in the left side of the equation a quadratic expression.
For example, we can write the quadratic equation x^2 + 3x = 10 as x^2 + 3x – 10 = 0.
Now we will learn how to factorize the above quadratic expression.
x^2 + 3x  10
= x^2 + 5x  2x  10
= x(x + 5) 2 (x + 5)
= (x + 5)(x – 2),
Therefore, x^2 + 3x – 10 = (x + 5)(x – 2) ............ (A)
Note: We know that mn = 0 implies that, either (i) m = 0 or n = 0 or (ii) m = 0 and n = 0. It is not possible that both of m and n are nonzero.
From (A) we get,
(x + 5)(x – 2) = 0, then any one of x + 5 and x  2 must be zero.
So, factorizing the left side of the equation x^2 + 3x – 10 = 0 we get, (x + 5)(x – 2) = 0
Therefore, any one of (x + 5) and (x – 2) must be zero
i.e., x + 5 = 0 ................ (I)
or, x – 2 = 0 .................. (II)
Both of (I) and (II) represent linear equations, which we can solve to get the value of x.
From equation (I), we get x = 5 and from equation (II), we get x = 2.
Therefore the solutions of the equation are x = 5 and x = 2.
We will solve a quadratic equation in the following way:
(i) First we need to express the given equation in the general form of the quadratic equation ax^2 + bx + c = 0, then
(ii) We need to factorize the left side of the quadratic equation,
(iii) Now express each of the two factor equals to 0 and solve them
(iv)The two solutions are called the roots of the given quadratic equation.
Notes: (i) If b ≠ 0 and c = 0, one root of the quadratic equation is always zero.
For example, in the equation 2x^2  7x = 0, there is no constant term. Now factoring the left side of the equation, we get x(2x  7).
Therefore, x(2x  7) = 0.
Thus, either x = 0 or, 2x – 7 = 0
either x = 0 or, x = 7/2
Therefore, the two roots of the equation 2x^2  7x = 0 are 0, 7/2.
(ii) If b = 0, c = 0, both the roots of the quadratic equation will be zero. For example, if 11x^2 = 0, then dividing both sides by 11, we get x^2 = 0 or x = 0, 0.
From General Properties of Quadratic Equation to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.