Examine the Roots of a Quadratic Equation

Examining the roots of a quadratic equation means to see the type of its roots i.e., whether they are real or imaginary, rational or irrational, equal or unequal.

The nature of the roots of a quadratic equation depends entirely on the value of its discriminant b\(^{2}\) - 4ac.

In a quadratic equation ax\(^{2}\) + bx + c = 0, a ≠ 0 the coefficients a, b and c are real. We know, the roots (solution) of the equation ax\(^{2}\) + bx + c = 0 are given by x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\).

1. If b\(^{2}\) - 4ac = 0 then the roots will be x = \(\frac{-b ± 0}{2a}\) = \(\frac{-b - 0}{2a}\), \(\frac{-b + 0}{2a}\) = \(\frac{-b}{2a}\), \(\frac{-b}{2a}\).

Clearly, \(\frac{-b}{2a}\) is a real number because b and a are real.

Thus, the roots of the equation ax\(^{2}\) + bx + c = 0 are real and equal if b\(^{2}\) – 4ac = 0.

2. If b\(^{2}\) - 4ac > 0 then \(\sqrt{b^{2} - 4ac}\) will be real and non-zero. As a result, the roots of the equation ax\(^{2}\) + bx + c = 0 will be real and unequal (distinct) if b\(^{2}\) - 4ac > 0.

3. If b\(^{2}\) - 4ac < 0, then \(\sqrt{b^{2} - 4ac}\) will not be real because \((\sqrt{b^{2} - 4ac})^{2}\) = b\(^{2}\) - 4ac < 0 and square of a real number always positive.

Thus, the roots of the equation ax\(^{2}\) + bx + c = 0 are not real if b\(^{2}\) - 4ac < 0.

As the value of b\(^{2}\) - 4ac determines the nature of roots (solution), b\(^{2}\) - 4ac is called the discriminant of the quadratic equation.


Definition of discriminant: For the quadratic equation ax\(^{2}\) + bx + c =0, a ≠ 0; the expression b\(^{2}\) - 4ac is called discriminant and is, in general, denoted by the letter ‘D’.

Thus, discriminant D = b\(^{2}\) - 4ac

Note:

Discriminant of

ax\(^{2}\) + bx + c = 0

Nature of roots of

ax\(^{2}\) + bx + c = 0

Value of the roots of

ax\(^{2}\) + bx + c = 0

b\(^{2}\) - 4ac = 0

Real and equal

- \(\frac{b}{2a}\), -\(\frac{b}{2a}\)

b\(^{2}\) - 4ac > 0

Real and unequal

\(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

b\(^{2}\) - 4ac < 0

Not real

No real value

When a quadratic equation has two real and equal roots we say that the equation has only one real solution.


Solved examples to examine the nature of roots of a quadratic equation:

1. Prove that the equation 3x\(^{2}\) + 4x + 6 = 0 has no real roots.

Solution:

Here, a = 3, b = 4, c = 6.

So, the discriminant = b\(^{2}\) - 4ac

= 4\(^{2}\) - 4 ∙ 3 ∙ 6 = 36 - 72 = -56 < 0.

Therefore, the roots of the given equation are not real.


2. Find the value of ‘p’, if the roots of the following quadratic equation are equal (p - 3)x\(^{2}\) + 6x + 9 = 0.

Solution:

For the equation (p - 3)x\(^{2}\) + 6x + 9 = 0;

a = p - 3, b = 6 and c = 9.

Since, the roots are equal

Therefore, b\(^{2}\) - 4ac = 0

⟹ (6)\(^{2}\) - 4(p - 3) × 9 = 0

⟹ 36 - 36p + 108 = 0

⟹ 144 - 36p = 0

⟹ -36p = - 144

⟹ p = \(\frac{-144}{-36}\)

⟹ p = 4

Therefore, the value of p = 4.


3. Without solving the equation 6x\(^{2}\) - 7x + 2 = 0, discuss the nature of its roots.

Solution:

Comparing 6x\(^{2}\) - 7x + 2 = 0 with ax\(^{2}\) + bx + c = 0 we have a = 6, b = -7, c = 2.

Therefore, discriminant = b\(^{2}\) – 4ac = (-7)\(^{2}\) - 4 ∙ 6 ∙ 2 = 49 - 48 = 1 > 0.

Therefore, the roots (solution) are real and unequal.

Note: Let a, b and c be rational numbers in the equation ax\(^{2}\) + bx + c = 0 and its discriminant b\(^{2}\) - 4ac > 0.

If b\(^{2}\) - 4ac is a perfect square of a rational number then \(\sqrt{b^{2} - 4ac}\) will be a rational number. So, the solutions x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\) will be rational numbers. But if b\(^{2}\) – 4ac is not a perfect square then \(\sqrt{b^{2} - 4ac}\) will be an irrational numberand as a result the solutions x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\) will be irrational numbers. In the above example we found that the discriminant b\(^{2}\) – 4ac = 1 > 0 and 1 is a perfect square (1)\(^{2}\). Also 6, -7 and 2 are rational numbers. So, the roots of 6x\(^{2}\) – 7x + 2 = 0 are rational and unequal numbers.




9 Grade Math

From Examine the Roots of a Quadratic Equation to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.