Exact Value of sin 7½°

How to find the exact value of sin 7½° using the value of cos 15°?

Solution: 

7½° lies in the first quadrant.

Therefore, sin 7½° is positive.

For all values of the angle A we know that, cos (α - β) = cos α cos β + sin α sin β.

Therefore, cos 15° = cos (45° - 30°)

cos 15° = cos 45° cos 30° + sin 45° sin 30°

           = \(\frac{1}{√2}\)∙\(\frac{√3}{2}\) + \(\frac{1}{√2}\)∙\(\frac{1}{2}\)

           = \(\frac{√3}{2√2}\) + \(\frac{1}{2√2}\)

           = \(\frac{√3 + 1}{2√2}\)

Again for all values of the angle A we know that, cos A = 1 - 2 sin\(^{2}\)\(\frac{A}{2}\)

⇒ 1 - cos A = 2 sin\(^{2}\) \(\frac{A}{2}\)

⇒ 2 sin\(^{2}\) \(\frac{A}{2}\) = 1 - cos A

⇒ 2 sin\(^{2}\) 7½˚ = 1 - cos 15°

⇒ sin\(^{2}\) 7½˚ = \(\frac{1  -  cos 15°}{2}\)

⇒ sin\(^{2}\) 7½˚ = \(\frac{1 - \frac{√3 + 1}{2√2}}{2}\)

⇒ sin\(^{2}\) 7½˚ = \(\frac{2√2 - √3 - 1}{4√2}\)

⇒ sin 7½˚ = \(\sqrt{\frac{4 - √6 - √2}{8}}\), [Since sin 7½° is positive]

⇒ sin 7½˚ = \(\frac{\sqrt{4 - √6 - √2}}{2√2}\)

Therefore, sin 7½˚ = \(\frac{\sqrt{4 - √6 - √2}}{2√2}\)








11 and 12 Grade Math

From Exact Value of sin 7 and Half Degree to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.