Elimination of Trigonometric Ratios

Here we will learn about the elimination of trigonometric ratios with the help of different types of problems.

In order to eliminate the T-ratios from the given relations, we make use of the fundamental trigonometrical identities, in the following examples.

Worked-out examples on elimination of trigonometric ratios:

1. If sin θ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1

Solution:

sin θ + sin2 θ = 1

⇒ sin θ = 1 - sin2 θ, [subtract sin2 θ from both the sides]

⇒ sin θ = cos2 θ, [since, 1 – sin2 θ = cos2 θ]

⇒ sin2 θ = cos4 θ, [squaring both the sides]

⇒ 1 - cos2 θ = cos4 θ, [since sin2 θ = 1 – cos2 θ]

⇒ 1 = cos4 θ + cos2 θ, [adding cos2 θ on both the sides]

⇒ cos4 θ + cos2 θ = 1

Therefore, cos2 θ + cos4 θ = 1


2. If (cos θ + sin θ) = √2 cos θ, shown that (cos θ - sin θ) = √2 sin θ

Solution:

(cos θ + sin θ) = √2 cos θ ………… (A)

⇒ (cos θ + sin θ) 2 = 2 cos2 θ, [squaring both the sides]

⇒ cos2 θ + sin2 θ + 2 sin θ cos θ = 2 cos2 θ

⇒ 2 sin θ cos θ = 2 cos2 θ - cos2 θ - sin2 θ

⇒ 2 sin θ cos θ = cos2 θ - sin2 θ

⇒ cos2 θ - sin2 θ = 2 sin θ cos θ

⇒ (cos θ + sin θ) (cos θ - sin θ) = 2 sin θ cos θ

⇒ (√2 cos θ) (cos θ - sin θ) = 2 sin θ cos θ ………… using (A)

⇒ (cos θ - sin θ) = (2 sin θ cos θ)/(√2 cos θ)

⇒ (cos θ - sin θ) = √2 sin θ

Therefore, (cos θ - sin θ) = √2 sin θ


3. If 3 sin θ + 5 cos θ = 5, prove that (5 sin θ - 3 cos θ) = ± 3.

Solution:

(3 sin θ + 5 cos θ)2 + (5 sin θ - 3 cos θ)2

                                = (9 sin2 θ + 25 cos2 θ + 30 sin θ cos θ) + (25 sin2 θ                                   + 9 cos2 θ - 30 sin θ cos θ)

                               = 34 sin2 θ + 34 cos2 θ

                               = 34 (sin2 θ + cos2 θ)

                               = 34 (1)

                               = 34

⇒ (3 sin θ + 5 cos θ)2 + (5 sin θ - 3 cos θ)2 = 34

⇒ (5)2 + (5 sin θ - 3 cos θ)2 = 34, [since, (3 sin θ + 5 cos θ) = 5]

⇒ 25 + (5 sin θ - 3 cos θ)2 = 34

⇒ (5 sin θ - 3 cos θ)2 = 9 [subtract 25 from both the sides]

⇒ (5 sin θ - 3 cos θ) = ± 3

Therefore, (5 sin θ - 3 cos θ) = ± 3.


The above problems on elimination of trigonometric ratios are explained step-by-step so, that students get the clear concept how to make use of the fundamental trigonometrical identities.

Trigonometric Functions


10th Grade Math

From Elimination of Trigonometric Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.