Compound Interest when Interest is Compounded Quarterly

We will learn how to use the formula for calculating the compound interest when interest is compounded quarterly.

Computation of compound interest by using growing principal becomes lengthy and complicated when the period is long. If the rate of interest is annual and the interest is compounded quarterly (i.e., 3 months or, 4 times in a year) then the number of years (n) is 4 times (i.e., made 4n) and the rate of annual interest (r) is one-fourth (i.e., made \(\frac{r}{4}\)).  In such cases we use the following formula for compound interest when the interest is calculated quarterly.

If the principal = P, rate of interest per unit time = \(\frac{r}{4}\)%, number of units of time = 4n, the amount = A and the compound interest = CI

Then

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

Here, the rate percent is divided by 4 and the number of years is multiplied by 4.

Therefore, CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1}

Note:

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) is the relation among the four quantities P, r, n and A.

Given any three of these, the fourth can be found from this formula.

CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1} is the relation among the four quantities P, r, n and CI.

Given any three of these, the fourth can be found from this formula.


Word problems on compound interest when interest is compounded quarterly:

1. Find the compound interest when $1,25,000 is invested for 9 months at 8% per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 1,25,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,25,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,25,000 (1 + \(\frac{2}{100}\))\(^{3}\)

                                                                       = $ 1,25,000 (1 + \(\frac{1}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × (\(\frac{51}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

                                                                       = $ 1,32,651

Therefore, compound interest $ (1,32,651 - 1,25,000) = $ 7,651.

 

2. Find the compound interest on $10,000 if Ron took loan from a bank for 1 year at 8 % per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 10,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = 1 year

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $ 10,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ 1}\)

   = $ 10,000 (1 + \(\frac{2}{100}\))\(^{4}\)

   = $ 10,000 (1 + \(\frac{1}{50}\))\(^{4}\)

   = $ 10,000 × (\(\frac{51}{50}\))\(^{4}\)

   = $ 10,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

   = $ 10824.3216

   = $ 10824.32 (Approx.)

Therefore, compound interest $ (10824.32 - $ 10,000) = $ 824.32


3. Find the amount and the compound interest on $ 1,00,000 compounded quarterly for 9 months at the rate of 4% per annum.

Solution:

Here, P = principal amount (the initial amount) = $ 1,00,000

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,00,000 (1 + \(\frac{\frac{4}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,00,000 (1 + \(\frac{1}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × (\(\frac{101}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × \(\frac{101}{100}\) × \(\frac{101}{100}\) × \(\frac{101}{100}\)

                                                                       = $ 103030.10

Therefore, the required amount = $ 103030.10 and compound interest $ ($ 103030.10 - $ 1,00,000) = $ 3030.10

 

4. If $1,500.00 is invested at a compound interest rate 4.3% per annum compounded quarterly for 72 months, find the compound interest.

Solution:

Here, P = principal amount (the initial amount) = $1,500.00

Rate of interest (r) = 4.3 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{72}{12}\) years = 6 years.

A = amount of money accumulated after n years

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $1,500.00 (1 + \(\frac{\frac{4.3}{4}}{100}\))\(^{4 ∙ 6}\)

   = $1,500.00 (1 + \(\frac{1.075}{100}\))\(^{24}\)

   = $1,500.00 × (1 + 0.01075)\(^{24}\)

   = $1,500.00 × (1.01075)\(^{24}\)

   = $ 1938.83682213

   = $ 1938.84 (Approx.)

Therefore, the compound interest after 6 years is approximately $ (1,938.84 - 1,500.00) = $ 438.84.

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions




8th Grade Math Practice 

From Compound Interest when Interest is Compounded Quarterly to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 02:46 AM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  2. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:55 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  3. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  4. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  5. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More