Complex Numbers Formulae

We will discuss about the complex numbers formulae.

1. Definition of complex number: If an ordered pair (x, y) of two real numbers x and y is represented by the symbol x + iy, where i = √-1, then the order pair is called a complex number or an imaginary number. If z = x + iy then x is called the real part of the complex number z and y is called its imaginary part.

2. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then their sum z\(_{1}\) + z\(_{2}\) is defined as

z\(_{1}\) + z\(_{2}\) = (p + r) + i(q + s).


3. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then the subtraction of z\(_{2}\) from z\(_{1}\) is defined as

z\(_{1}\) - z\(_{2}\) = z\(_{1}\) + (-z\(_{2}\))

= (p + iq) + (-r - is)

= (p - r) + i(q - s)


4. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be two complex numbers (p, q, r and s are real), then their product z\(_{1}\)z\(_{2}\) is defined as

z\(_{1}\)z\(_{2}\) = (pr - qs) + i(ps + qr).


5. Division of a complex number z\(_{1}\) = p + iq by z\(_{2}\) = r + is ≠ 0 is defined as

\(\frac{z_{1}}{z_{2}}\) = \(\frac{pr + qs}{\sqrt{r^{2} + s^{2}}}\) + i\(\frac{qr - ps}{\sqrt{r^{2} + s^{2}}}\)


6. In any two complex numbers, if only the sign of the imaginary part differ then, they are known as complex conjugate of each other. If x, y are real and i = √-1 then the complex numbers x + iy and x - iy are said to be conjugate of each other; conjugate of complex number z is denoted by \(\overline{z}\).

7. Modulus of a complex number z = x + iy, denoted by mod(z) or |z| or |x + iy|, is defined as |z|[or mod z or |x + iy|] = + \(\sqrt{x^{2} + y^{2}}\) ,where a = Re(z), b = Im(z)

If z = x + iy then the positive root of (x\(^{2}\)+ y \(^{2}\)) is called the modulus or absolute value of z and is denoted by |z| or mod z. Thus, if z = x + iy then, |z| = \(\sqrt{x^{2} + y^{2}}\).

Again, if z = x + iy then the unique value of θ satisfying x = |z| cos θ, y = |z| sin θ and - π < θ ≤ π is called the principal value of argument (or amplitude) of z and is denoted by arg z or amp z. If the point p(z) in the Argand Diagram represents the complex number z = (x, y) = x + iy and agr z = θ then

(i) 0 < θ < \(\frac{π}{2}\) when P lies on the first quadrant;

(ii) \(\frac{π}{2}\) < θ < π when P lies on the second quadrant;

(iii) - π < θ < - \(\frac{π}{2}\) when P lies on the third quadrant;

(iv) - \(\frac{π}{2}\) < θ < 0 when P lies on the fourth quadrant.


8. z = r(cos θ + i sin θ) where r = |z| and θ = are z, - π < θ < π, is called the modulus-amplitude form of the complex number z.

9. When a, b are real numbers and a + ib = 0 then a = 0, b = 0

10. When a, b, c and d are real numbers and a + ib = c + id then a = c and b = d.

11. i = √-1; i\(^{2}\)  = - 1; i\(^{3}\) = -i; i\(^{4}\) = 1. Any integral power of i is i or (-i) or 1.

12. |z\(_{1}\) + z\(_{2}\) | ≤|z\(_{1}\)| + |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).

13. |z\(_{1}\)z\(_{2}\)| = |z\(_{1}\)| |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).

14. |\(\frac{z_{1}}{z_{2}}\)| = \(\frac{|z_{1}|}{|z_{2}|}\), for two complex numbers z\(_{1}\) and z\(_{2}\).

15. (a) arg (z\(_{1}\)z\(_{2}\)) = arg z\(_{1}\) -  agr z\(_{2}\) + m, for two complex numbers z\(_{1}\) and z\(_{2}\), Where m = 0 or, 2π or, (-2π).

(b) arg (\(\frac{z_{1}}{z_{2}}\)) = arg z\(_{1}\) -  agr z\(_{2}\) + m, for two complex numbers z\(_{1}\) and z\(_{2}\), Where m = 0 or, 2π or, (-2π).


16. The sum of two conjugate complex numbers is real.

17. The product of two conjugate complex numbers is real.

18. When the sum of two complex numbers is real and the product of two complex numbers is also real then the complex numbers are conjugate to each other.

19. Cube roots of 1 are 1, ω, ω\(^{2}\) where

ω = \(\frac{-1 + \sqrt{3}i}{2}\) or, \(\frac{-1 - \sqrt{3}i}{2}\);

here ω and ω\(^{2}\) are called the imaginary cube roots of 1.


20. The multiplicative inverse of a non-zero complex z is equal to its reciprocal and is represent as

\(\frac{Re(z)}{|z|^{2}}\) + i\(\frac{(-Im(z))}{|z|^{2}}\)= \(\frac{\overline{z}}{|z|^{2}}\)

21. If ω be an imaginary cube root of unity then ω\(^{3}\) = 1 and 1 + ω + ω\(^{2}\) = 0.






11 and 12 Grade Math 

From Complex Numbers Formulae to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Multiplication of a Number by a 3-Digit Number |3-Digit Multiplication

    Mar 28, 24 06:04 PM

    Multiplying by 3-Digit Number
    In multiplication of a number by a 3-digit number are explained here step by step. Consider the following examples on multiplication of a number by a 3-digit number: 1. Find the product of 36 × 137

    Read More

  2. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  3. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  4. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  5. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Mar 25, 24 04:18 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More