Cardinal Number of a Set

What is the cardinal number of a set?

The number of distinct elements in a finite set is called its cardinal number. It is denoted as n(A) and read as ‘the number of elements of the set’.

For example:

(i) Set A = {2, 4, 5, 9, 15} has 5 elements.

Therefore, the cardinal number of set A = 5. So, it is denoted as n(A) = 5.


(ii) Set B = {w, x, y, z} has 4 elements.

Therefore, the cardinal number of set B = 4. So, it is denoted as n(B) = 4.


(iii) Set C = {Florida, New York, California} has 3 elements.

Therefore, the cardinal number of set C = 3. So, it is denoted as n(C) = 3.


(iv) Set D = {3, 3, 5, 6, 7, 7, 9} has 5 element.

Therefore, the cardinal number of set D = 5. So, it is denoted as n(D) = 5.


(v) Set E = {   } has no element.

Therefore, the cardinal number of set D = 0. So, it is denoted as n(D) = 0.

Note:

(i) Cardinal number of an infinite set is not defined.

(ii) Cardinal number of empty set is 0 because it has no element.

 

Solved examples on Cardinal number of a set:

1. Write the cardinal number of each of the following sets:

(i) X = {letters in the word MALAYALAM}

(ii) Y = {5, 6, 6, 7, 11, 6, 13, 11, 8}

(iii) Z = {natural numbers between 20 and 50, which are divisible by 7}

Solution:

(i) Given, X = {letters in the word MALAYALAM}

Then, X = {M, A, L, Y}

Therefore, cardinal number of set X = 4, i.e., n(X) = 4

(ii) Given, Y = {5, 6, 6, 7, 11, 6, 13, 11, 8}

Then, Y = {5, 6, 7, 11, 13, 8}

Therefore, cardinal number of set Y = 6, i.e., n(Y) = 6

(iii) Given, Z = {natural numbers between 20 and 50, which are divisible by 7}

Then, Z = {21, 28, 35, 42, 49}

Therefore, cardinal number of set Z = 5, i.e., n(Z) = 5


2. Find the cardinal number of a set from each of the following:

(i) P = {x | x ∈ N and x\(^{2}\) < 30}

(ii) Q = {x | x is a factor of 20}

Solution:

(i) Given, P = {x | x ∈ N and x\(^{2}\) < 30}

Then, P = {1, 2, 3, 4, 5}

Therefore, cardinal number of set P = 5, i.e., n(P) = 5

(ii) Given, Q = {x | x is a factor of 20}

Then, Q = {1, 2, 4, 5, 10, 20}

Therefore, cardinal number of set Q = 6, i.e., n(Q) = 6

Set Theory

Sets

Objects Form a Set

Elements of a Set

Properties of Sets

Representation of a Set

Different Notations in Sets

Standard Sets of Numbers

Types of Sets

Pairs of Sets

Subset

Subsets of a Given Set

Operations on Sets

Union of Sets

Intersection of Sets

Difference of two Sets

Complement of a Set

Cardinal number of a set

Cardinal Properties of Sets

Venn Diagrams



7th Grade Math Problems

From Cardinal Number of a Set to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.