2 arctan(x) = arctan(\(\frac{2x}{1 - x^{2}}\)) = arcsin(\(\frac{2x}{1 + x^{2}}\)) = arccos(\(\frac{1 - x^{2}}{1 + x^{2}}\))

We will learn how to prove the property of the inverse trigonometric function, 2 arctan(x) = arctan(\(\frac{2x}{1 - x^{2}}\)) = arcsin(\(\frac{2x}{1 + x^{2}}\)) = arccos(\(\frac{1 - x^{2}}{1 + x^{2}}\))

or, 2 tan\(^{-1}\) x = tan\(^{-1}\) (\(\frac{2x}{1 - x^{2}}\)) = sin\(^{-1}\) (\(\frac{2x}{1 + x^{2}}\)) = cos\(^{-1}\) (\(\frac{1 - x^{2}}{1 + x^{2}}\))

Proof: 

Let, tan\(^{-1}\) x = θ         

Therefore, tan θ = x

We know that,

tan 2θ = \(\frac{2 tan θ}{1 - tan^{2}θ}\)

tan 2θ = \(\frac{2x}{1 - x^{2}}\)

2θ = tan\(^{-1}\)(\(\frac{2x}{1 - x^{2}}\))

2 tan\(^{-1}\) x = tan\(^{-1}\)(\(\frac{2x}{1 - x^{2}}\)) …………………….. (i)

Again, sin 2θ = \(\frac{2 tan θ}{1 + tan^{2}θ}\)

sin 2θ = \(\frac{2x}{1 + x^{2}}\)

2θ = sin\(^{-1}\)(\(\frac{2x}{1 + x^{2}}\) )

2 tan\(^{-1}\) x = sin\(^{-1}\)(\(\frac{2x}{1 + x^{2}}\)) …………………….. (ii)

Now,  cos 2θ = \(\frac{1 - tan^{2}θ}{1 + tan^{2}θ}\)

 cos 2θ =  \(\frac{1 - x^{2} }{1 + x^{2} }\)

2θ = cos\(^{-1}\) (\(\frac{1 - x^{2} }{1 + x^{2} }\))

2 tan\(^{-1}\) x = cos (\(\frac{1 - x^{2} }{1 + x^{2} }\)) …………………….. (iii)

Therefore, from (i), (ii) and (iii) we get, 2 tan\(^{-1}\) x = tan\(^{-1}\) \(\frac{2x}{1 - x^{2}}\) = sin\(^{-1}\) \(\frac{2x}{1 + x^{2}}\) = cos\(^{-1}\) \(\frac{1 - x^{2}}{1 + x^{2}}\)                   Proved.

 

Solved examples on property of inverse circular function 2 arctan(x) = arctan(\(\frac{2x}{1 - x^{2}}\)) = arcsin(\(\frac{2x}{1 + x^{2}}\)) = arccos(\(\frac{1 - x^{2}}{1 + x^{2}}\)):

1. Find the value of the inverse function tan(2 tan\(^{-1}\) \(\frac{1}{5}\)).

Solution:

tan (2 tan\(^{-1}\) \(\frac{1}{5}\))

= tan (tan\(^{-1}\) \(\frac{2 × \frac{1}{5}}{1 - (\frac{1}{5})^{2}}\)), [Since, we know that, 2 tan\(^{-1}\) x = tan\(^{-1}\)(\(\frac{2x}{1 - x^{2}}\))]

 = tan (tan\(^{-1}\) \(\frac{\frac{2}{5}}{1 - \frac{1}{25}}\))

= tan (tan\(^{-1}\) \(\frac{5}{12}\))

= \(\frac{5}{12}\)

 

2. Prove that, 4 tan\(^{-1}\) \(\frac{1}{5}\) - tan\(^{-1}\) \(\frac{1}{70}\) + tan\(^{-1}\) \(\frac{1}{99}\) = \(\frac{π}{4}\)

Solution:

L. H. S. = 4 tan\(^{-1}\) \(\frac{1}{5}\) - tan\(^{-1}\) \(\frac{1}{70}\) + tan\(^{-1}\) \(\frac{1}{99}\)

= 2(2 tan\(^{-1}\) \(\frac{1}{5}\)) - tan\(^{-1}\) \(\frac{1}{70}\) + tan\(^{-1}\) \(\frac{1}{99}\)

= 2(tan\(^{-1}\) \(\frac{2 × \frac{1}{5}}{1 - (\frac{1}{5})^{2}}\)) - tan\(^{-1}\) \(\frac{1}{70}\) + tan\(^{-1}\) \(\frac{1}{99}\), [Since, 2 tan\(^{-1}\) x = tan\(^{-1}\)(\(\frac{2x}{1 - x^{2}}\))]

= 2 (tan\(^{-1}\) \(\frac{2\frac{1}{5}}{1 - (\frac{1}{25})}\))- tan\(^{-1}\) \(\frac{1}{70}\) + tan\(^{-1}\) \(\frac{1}{99}\),

= 2 tan\(^{-1}\) \(\frac{5}{12}\) - (tan\(^{-1}\) \(\frac{1}{70}\) - tan\(^{-1}\) \(\frac{1}{99}\))

= tan\(^{-1}\) (\(\frac{2 × \frac{5}{12}}{1 - (\frac{5}{12})^{2}}\)) - tan\(^{-1}\) (\(\frac{\frac{1}{70} - \frac{1}{99}}{1 + \frac{1}{77} × \frac{1}{99}}\))

= tan\(^{-1}\) \(\frac{120}{199}\) - tan\(^{-1}\) \(\frac{29}{6931}\)

= tan\(^{-1}\) \(\frac{120}{199}\) - tan\(^{-1}\) \(\frac{1}{239}\)

= tan\(^{-1}\) (\(\frac{\frac{120}{199} - \frac{1}{239}}{1 + \frac{120}{119} × \frac{1}{239}}\))

= tan\(^{-1}\) 1

= tan\(^{-1}\) (tan \(\frac{π}{4}\))

= \(\frac{π}{4}\) = R. H. S.              Proved.






11 and 12 Grade Math

From 2 arctan(x) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.